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This paper presents a deterministic model for describing and objectifying the students' mathematical 
activity, targeting the field of discrete mathematics. This model allows to identify their proving 
processes in problem-solving, involving the manipulation of tangible objects, based on the 
audiovisual data collected. The model is described in three steps. The first one involves selecting 
observables relating to the actions and strategies linked to the proving process identified in the 
mathematical analysis that we wish to identify in the students' mathematical activity. The second one 
concerns the retranscription and encoding of their activity in relation to the choice of actions 
performed. Finally, the last one involves analysing the retranscriptions of their activity and 
comparing them with the strategies identified in the mathematical analysis, to find similarities in the 
proving processes used to solve the problem. 
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Background and objective of the research 
The field of Discrete Mathematics is important for teaching and learning of the reasoning and the 
proving process. As Gravier and Ouvrier-Buffet (2022) point out, many international works on 
problem solving and proof use this field (e.g., Da Ronch, 2022; Grenier & Payan, 1999; Hanna & de 
Villiers, 2012; Hart & Sandefur, 2018; Stylianides, 2016). Discrete Mathematics encourage the 
students to develop an authentic mathematical activity (Lampert, 1990) similar to that mathematician, 
particularly in terms of the skills and know-how associated with this activity. Moreover, this field 
makes it easily to illustrate problems using tangible objects (see Grenier & Payan, 1999; Da Ronch, 
2022). But how can we identify in students' mathematical activity and their proving processes used 
in problem solving when they manipulate these objects? One way of proceeding is to carry out an 
analysis of the traces using audiovisual data collected with the camera assistance. The audiovisual 
data allows to researchers to access more easily and more exhaustively to the traces of activities 
produced by students (Jewitt, 2012; Da Ronch, 2022). This also means that students don't have to 
select the traces they wish to leave behind a researcher or a teacher when it comes to submitting 
written work. Written traces lead to a loss of information and make the retranscription of the activity 
less objective. In a way, they also encourage interpretation biases in the analysis of these written 
traces by the researcher. The aim of this paper is therefore to propose a deterministic model for 
retranscribing the students' mathematical activity on discrete mathematics problems and to provide 
tools for analysing their proving processes. This model is a theoretical model for research in (discrete) 
mathematics education. It is therefore not intended to be put into practice by teachers, but rather to 
be used by researchers. On this occasion, we will first give some theoretical elements which will then 
enable us to describe the main steps in this model, particularly about the choice of observables, the 
retranscription method and the analysis of the latter. Several examples illustrating this model are 
given in Da Ronch’s work (2022). 
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Theoretical background and research questions 
Many models of problem-solving processes exist (Rott et al., 2021). The authors describe and 
compare existing models to characterise their potential and limitations for analysing students' 
problem-solving processes. Among other things, they point out that most of the models proposed are 
normative. They affirm that these phase models were not designed for the analysis of empirical data 
or to describe externally observed processes (e.g., videotaped problem-solving processes of students), 
which highlights the authors' need to build a descriptive model. The model developed by Rott et al. 
(2021) can be used to code episodes, i.e. to code “A period of time during which an individual or a 
problem solving group is engaged in one large task […] or a closely related body of tasks in the 
service of the same goal […]” (Schoenfeld, 1985, p. 292). These episodes are then coded according 
to a pre-defined typology (deductive approach), which is then enriched by data analysis (inductive 
approach). However, episodes are coded at a macroscopic level of student activity (e.g., “reading the 
problem; implementing a plan; verifying a solution”, etc.) (Rott et al., 2021, p. 743). This model 
therefore does not allow us to retranscribe, at a microscopic level, the activity of the students in order 
to give a retranscription as close as possible to the reality observed. Moreover, this microscopic 
retranscription of the pupils' activity would make it possible to reduce the interpretation bias that can 
be induced by coding into episodes and coding the associated episode types.  

If we want to identify students' mathematical activity in problem-solving, and their proving processes, 
one way of doing this is to identify a set of elementary actions considered relevant to the given 
problem. We are therefore at a microscopic level. Moreover, these actions are directed towards the 
environment of the situation, but do not all have the same function. The notion of environment named 
milieu in French didactic was developed by Brousseau (1997), Margolinas (1995) and Bloch (2006) 
in terms of structuring the environment by levels. Other researchers have proposed a characterisation 
of the environment in which students operate according to three spaces: micro-space, meso-space and 
macro-space (e.g., Berthelot & Salin, 1992). These three spaces simply allow to classify the 
environment according to the value of the variable concerning the size of the space. However, the 
characterisations given in the literature do not allow us to categorise the actions directed towards the 
environment of the situation in detail, especially as these actions do not all have the same functions 
(Da Ronch, 2022). It therefore seems more appropriate to categorise our environment according to 
its functionalities. This will enable us to propose a typology of actions according to the zone of 
interaction with the environment and their assigned function. For our research, the environment is 
therefore characterised in functional zones, while considering the social dimension of mathematical 
activity.  The Work Zone (𝒲𝒵) is the main area of the environment where the subject act to solve the 
problem. Therefore, the actions in this zone are linked to actions about problem-solving. The Tooling 
Zone (𝒯𝒵)	is the zone of the environment which provides to the subject(s), the objects they need to 
develop their actions in problem-solving. The Information Zone (ℐ𝒵) is the zone of the environment 
which communicates information about the problem: rules of the game, instructions, examples, etc. 
(Da Ronch, 2022; 2024).  

In relation to the objective formulated in the first section of the paper and the characterisation given 
to our environment, several questions can be formulated, namely: what choices of observables should 
we make? How can we retranscribe the students' mathematical activity? And how should it be 



 

 

   
 

analysed? In the following section, we describe the steps in our model that will enable us to answer 
to these questions. These steps will make it possible to objectify students' mathematical activity, and 
particularly their proving processes based on audiovisual data collected.  

Method for processing and analysing audiovisual data: a three-step model 
In this section we present our model called ORA (O for observable, R for retranscription and A for 
analysis). The different steps of this theoretical model will be illustrated by an example based on a 
problem in discrete mathematics. This model has already been applied to other problems (e.g., Da 
Ronch, 2022) during research aimed at retranscribing and finely analysing the mathematical problem-
solving activity of individuals, out of the classroom (in a context of popularisation of mathematics), 
with dozens of participants. In each case, coding was carried out by a single researcher based on the 
choice of observables made through mathematical analysis of the problem (deductive approach). 

Choice of observables: typology, actions and strategies for identifying proving processes 

Firstly, we have to identify elementary actions noted 𝑎". The mathematical analysis carried out on the 
problem allows us to retain only a subset 𝔸 of this 𝑎"-actions. Thus, these elementary actions are 
chosen for epistemological reasons in relation to the knowledge we have on the problem, or for 
didactic reasons. Furthermore, the subset 𝔸 of these actions is finite since the corpus of audiovisual 
data to be processed and analysed is also finite. The characterisation of the environment by functional 
zones makes it possible to propose a typology of actions. We can therefore distinguish 4 types of 
specific action. The 𝒲-actions which are actions that modify 𝒲𝒵 . The 𝒯-actions that interact with 
𝒯𝒵. This may involve selecting or depositing objects in 𝒯𝒵. The ℐ-actions that allow access to ℐ𝒵 .	
Finally, the 𝒮𝒪-actions which are actions arising from social interactions involving exchanges 
between peers or to oneself. They can be actions in oral language or actions that involve gestures (Da 
Ronch, 2022; 2024).  

To identify traces of students' mathematical activity, we need to identify actions based on the 
knowledge or skills we have about solving of the problem. One way of doing this is to objectify their 
solving strategies, which require the mobilisation of knowledge, skills or know-how, by means of 
ordered actions carried out on objects in order to solve a given problem P. These strategies will be 
defined in extension or in comprehension (Da Ronch, 2022). When we have access to all the strategies 
and can describe them as a sequence of 𝑎"-actions, on instantiated 𝑜#-objects, we will define them in 
extension. A strategy can therefore be defined as a word 𝛚 which takes the form of a sequence 𝑎"𝑜#. 
On the other hand, when it is not possible to describe all the strategies because there are too many for 
instance, we will describe these strategies in comprehension, i.e., using a set of actions on generic 
objects. The example below illustrates a sequence of ordered actions (additions) performed on objects 
(dominoes) to prove the non-existence of tiling in this configuration (Figure 1). The proof of non-
existence consists of reasoning by necessary conditions until an absurdity is reached (two non-
adjacent squares that cannot be tiled by a domino). The case study provides a complete proof of the 
non-existence of tiling. 



 

 

   
 

 
Figure 1: Strategy for proving the non-existence of this tiling  

Retranscription of the experience: encoding of elementary actions and retranscription method 

To retranscribe the actions that describe the strategies used by the students during the proving 
processes and the actions linked to the formulation of knowledge, we need to give an encoding. To 
make our retranscription intelligible, we bijectively encode the actions 𝑎" of 𝔸 in an intelligible 
symbolic format taken from a finite set 𝕃 of symbols. These symbols are built as close as possible to 
the observed reality. 

Table 1: Examples of encoding 

Type of actions  𝑎!-action of 𝔸 Associated symbol of 𝕃 

𝒲-action To add + 

𝒲-action To remove  – 

𝒯-action To search   

𝒮𝒪-action To point   

𝒮𝒪-action To chat  

Now that we have encoded the 𝑎"-actions, we propose a retranscription method. This method is 
completely deterministic, since it is not open to interpretation and could be carried out by a computer. 
The actions (𝑎" ∈ 𝔸) carried out on objects (𝑜" ∈ 𝕆 with 𝕆 that could be empty) by the observed 
student (𝑠$ ∈ 𝕊) characterise the student's local activity. We define this local activity as a micro-
activity characterised by a triplet (𝑎" , 𝑜#,𝑠$) ∈ 𝔸 × 𝕆 × 𝕊. Between each micro-activity, the time t and 
the discretised occurrence (occ ∈ ℕ) are specified by an occurrence and a time marker (Da Ronch, 
2022). 

 
Between each marker, there may be one or several micro-activities starting at the same time or for 
which we are unable to give an order, since we do not know precisely when they were carried out. 
We therefore assume that they all start at the same time. We refer to all micro-activities between two 
markers as phases. Here a phase is not an episode in the sense of Schoenfeld (1985). 



 

 

   
 

 
Below is an example of a retranscription of the micro-activities of two students trying to solve the 
problem proposed in the previous section (the dialogue transcription is in Da Ronch, 2022, p 325). 

 
Figure 2: Example of a retranscription of the activity of two students 𝒔𝟏 and 𝒔𝟐 

In this extract, two students (𝑠𝟏 and 𝑠𝟐) are trying to tile a 5×5 grid with dominoes. This grid has a 
hole (black unit square) and this hole is positioned by the students. In the retranscription, the students 
are identified by the red and blue colours corresponding to 𝑠𝟏 and 𝑠𝟐 respectively. In addition, when 
a student puts (+) or removes (-) a domino on the grid, we represent this domino in the colour 
corresponding to the student, with the plus (+) or the minus (-) symbol and coordinates. To quickly 
identify the position of the dominoes on the 5×5 grid, we take the bottom left square of the grid as 
the origin (1,1). For example, on the first occurrence, 𝑠𝟏 puts the unomino (hole) in position (2,5). 
Then, both students simultaneously put two dominoes vertically in positions (1,4) and (5,1). This 
means, for example, that the south square of the domino placed by student 𝑠𝟏 on the grid is in position 
(1,4).   

We then propose to enhance our transcription with a summary, i.e., an “enhanced” photograph of the 
Work Zone (𝒲𝒵) at a given moment, providing a static view of the situation at a given time. This 
summary allows us to retrace the students’ reality at a t time. It also allows us to know exactly the 
number of 𝒲-actions performed by the student knowing the number of 𝒲-actions performed by the 
other students. This gives the number of 𝒲-actions carried out between two effectives 𝒲-actions 
and also the distribution of these actions: did 𝑠𝟏 perform more, fewer or as many 𝒲-actions as 𝑠𝟐, 
for example? In the summary below, taken from the retranscription, we can see the reality of the 
students at a given moment in the retranscription (Figure 3). The symbols of type 𝒂|𝒃, where 𝒂 and 
𝒃 are integers, represent the number of 𝒲-actions of 𝑠𝟏 (respectively 𝑠𝟐) knowing the number of 𝒲-
actions of 𝑠𝟐 (respectively 𝑠𝟏). For example, during its first 𝒲-action,	 𝑠𝟏 puts the unit square in 
position (2,5), knowing that 𝑠𝟐 has not yet performed a 𝒲-action (Figure 2). We thus have coded 
𝟏|𝟎. 



 

 

   
 

 
Figure 3: Example of a summary linked to the retranscription (see Figure 2) 

The summary reproduces the Work Zone in which the students find themselves at a given moment, 
which is a perfectly complementary to the retranscription. 

Analysis method of retranscription for objectifying students' proving processes 

To analyse the retranscription (Figure 2) to objectify the students' proving processes, we need to 
remove some unnecessary information. This could be, for example, some dominoes which have been 
added and then removed, or some showing actions which are not significant in identifying a strategy 
linked to the proving process. We are therefore looking for a subword in this retranscription to 
highlight a strategy linked to a proving process identified in the mathematical analysis (Figure 1). 
This subword is shown in Figure 4. 

 
Figure 4: Subword from the retranscription sequence (see Figure 2) 

This subword shows a similarity with a part of the strategy for proving the non-existence of tiling in 
this configuration (figure 1). However, it does not describe the entire strategy given by the 
mathematical analysis. In fact, the students dealt with only one of the two cases to prove the non-
existence of tiling. Moreover, it is reasonable to say that it is only 𝑠𝟏 who has developed a solving 
strategy leading to a partial proving process of non-existence. Indeed, the subword described shows 
that 𝑠𝟏 has carried out almost all the actions needed to develop this partial strategy. In addition, the 
transcription of the dialogue shows that 𝑠𝟏 reasons well, using reasoning based on necessary 
conditions (“we have to”, see Da Ronch, 2022, p. 325) until it is no longer possible to add dominoes. 
Furthermore, the end of the retranscription shows that 𝑠𝟏 removes all the dominoes and changes the 
position of the hole (black unit square). This suggests that he has not realised that his strategy for 
proving the non-existence of tiling was incomplete. Finally, this subword shows a correct proving 
process but incomplete that implicitly uses a proof by non-contradiction and a reasoning by necessary 
conditions without an exhaustive study of the cases. Even if this proof is partial, 𝑠𝟏 has nevertheless 
developed a mathematical activity. Of course, this example of transcription is given for a particular 
instance; we would need to have the full transcription to be able to identify other strategies that would 
also be indicative of a mathematical activity. 

Results and discussion 
We have presented a deterministic model described in three steps: observable, retranscription and 
analysis. This model makes it possible to describe and objectify students' strategies in detail, and 
particularly their proving processes in problem-solving. We illustrated this on a tiling problem in 



 

 

   
 

Discrete Mathematics. This enabled us to show, on an example, that this theoretical model was 
operational for describing and recognising significant elements of the proving process in problem 
solving. (for other examples, see Da Ronch, 2022). Moreover, in this model, we can clearly locate 
the interpretation part. It is precisely at the level of the choice of observables (choice of actions and 
strategies that seem relevant to what we want to observe). The remainder is completely deterministic, 
excepted sometimes at the level of retranscription analysis, since the strategies identified may be 
more or less close to those identified in the mathematical analysis. With this model, a single coder is 
sufficient, as there can be no interpretation in the coding of an elementary action, unlike episode 
coding (Schoenfeld, 1985), which requires at least double coding to measure reliability. This model 
also shows its relevance and effectiveness when it comes to solving problems using tangible objects, 
whose actions are similar to those carried out in “paper and pencil”. Hence, Discrete Mathematics 
seems to be a suitable field, since a lot of mathematical objects (graphs, tiles, polyominos, etc.) can 
easily be represented in the form of tangible objects (Da Ronch, 2022; Gravier & Ouvrier-Buffet, 
2022). In addition, it is probable that such problems, represented in a numerical format, facilitate this 
retranscription but open up the question of computer transposition. It would be appropriate to consider 
this type of processing and analysis in an automated way using digital tools, Artificial Intelligence 
and image recognition, for instance. This would make it possible to search large volumes of data, for 
a wide variety of users and over a very long period. By the way, recent researches is being carried 
out by the TWEAK team (LIRIS in Lyon, France), with the kTBS4LA (kernel for Trace Based 
Systems for Learning Analytics) platform. Based on Learning Analytics, kTBS4LA enables 
observable traces to be collected, stored, manipulated and analysed in order to calculate indicators of 
individual activity (Casado et al., 2017; Lefevre, 2018). Our model can also be used to perform 
quantitative analyses by mining data collected on a specific action for instance. It also has its 
limitations, particularly when the execution time of the actions is different, making it possible the 
reading and the writing of the retranscription complex. This model also raises questions about its 
operationality towards complex abstract objects that cannot take on a tangible format, giving an 
encoding more complex. Finally, it is important to specify that this theoretical model is not intended 
to be used by teachers, but only to provide researchers with the necessary tools to identify the traces 
of mathematical activity in problem solving. 
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