

Epistemological Analysis and Design of Research Situations in Discrete Mathematics: Method and Examples

Mickaël Da Ronch, University of Teacher Education Valais, 1890 Saint-Maurice, Switzerland mickael.daronch@hepvs.ch

International Workshop on the Teaching and Learning of Discrete Mathematics University of Montpellier 7-8 June 2024

Introduction

- Theory of Didactical Situations is one of the important references in French Didactics (Brousseau, 1997)
- TDS and its concepts can be used to design and analyse of teaching and learning situations in different fields of mathematics (e.g., Discrete Math: Maths à Modeler Team at Grenoble Alps University)
- Didactical Engineering is often used as a research methodology in the French-speaking community for designing and analysing didactical situation in mathematics (Artigue, 2014)

Didactical Engeering

DE involves several stages:

"preliminary analysis, conception and *a priori* analysis, realization, observation and data collection, *a posteriori* analysis and validation" (Artigue, 2015, p. 471).

- In France, several studies in discrete mathematics education use DE as research methodology (e.g., Da Ronch, 2022, Giroud, 2012; Godot, 2005; Ouvrier-Buffet, 2003, *etc.*)
- The epistemological (mathematical) analysis is very important in the preliminary analysis
- This analysis make it possible "to support the search for mathematical situations representative of the knowledge [...]" (Artigue, 2014, p. 472).

Research Situation for the Classroom based on TDS and DE Methodology for designing Situations in Discrete Math.

RSC has several didactical conditions (Grenier & Payan, 2003; Ouvrier-Buffet & Gravier, 2022)

- The problem is based on mathematical research
- The mathematical problem should be easily understood for the students
- There are initial strategies with no prerequisites
- An answered question opens a new question
- There exist research variables
- There are a variety of strategies for progressing research and many developments are possible

Remark and Research Question

No method is specified for carrying out an epistemological analysis in order to determine consistent mathematical situations that are representative of the aimed knowledge and know-how (Da Ronch & Gravier, 2024)

RQ: How can we carry out an epistemological (mathematical) analysis of a problem to identify mathematical situations that are relevant in the field of discrete mathematics for instance ?

Theoretical Elements for our Method of Epistemological analysis

- ♦ A mathematical problem is based on 2 aspects (Da Ronch, 2022)
 - Syntatic : A mathematical problem must be formulated as a set of instances and a general question (Garey & Johnson, 1979).
 - Sémantic: Based on the *concept of problem* described by Giroud (2011) and in particular the notion of *problem-space* $\Omega_{\mathcal{P}}$ developed by Da Ronch (2022).
- ✤ For the last point : Significant epistemological quantity of a problem 𝒫 (Da Ronch, 2022)
- Zoom Concept (Da Ronch, 2022): enable to focus on the Problem-Space Ω_P, at different levels of granularity, depending on the target audience and knowledge and know-how aimed through the mathematical situations
 HEPVS | PHV

Method for carring out an Epistemogical Analysis

- Based on a research problem: identify the sets of problems to which the problem relates
- With the zoom concept, at a finer level of granularity, point out the problems inherent in these sets: design of the Problem-Space Ω_P

 Identify the proximity of these problems using the neighbourhood relationships between problems given by the epistemological analysis

♦ Partial sufficiency relationship ($\mathcal{P}_1 \dashrightarrow \mathcal{P}_2$)

• Sufficiency relationship
$$(\mathcal{P}_1 \rightarrow \mathcal{P}_2)$$

♦ Equivalent Relationship ($\mathcal{P}_1 \leftrightarrow \mathcal{P}_2$)

An Example from a Research Problem in Discrete Mathematics : The Domino Problem (WANG-PLANE)

- Instance: A finite set of Wang tiles.
- Question: Is it possible to tile the discrete plane Z² with this tileset? (Wang, 1961)

First Zoom on the Space-Problem $\Omega_{\mathbb{W}}$

This problem is close to 3 problem sets (TILING, COMPUTABILITY and ALGORITHMIC COMPLEXITY)

 Within this space, there are several problems that are linked by relationships (Da Ronch, 2022)

Second Zoom on the Problem-Space $\Omega_{\mathbb{W}}$

We find other problems with more specific conditions (instances) on the problems (Da Ronch, 2022).

Concepts of Discrete Mathematics mobilised depending on the Number of Zoom

1st Zoom

- Computability notions
- First-order logic notions
- Algorithmic complexity notions (NP-Complete, P, PSPACE...)
- Graph problems (pathfinding problem, cycle finding problem, Depth-First Search algorithm,...)
- Path Algebra (Binary Matrix, Calculation of the nth power...)

2nd Zoom

- Arithmetics notions : congruence, Euclidean division, induction principle
- Geometric notions : translation, periodicity, tiling
- Algorithmic notions : loop, variable, condition
- Know-how : Necessary condition/sufficient condition, proof of existence, proof of impossibility, several reasonings (implication, induction, contradiction...)

Conclusion and Research Prospects

- Proposal of a method for carrying out the epistemological study in order to design mathematical situations for targeted knowledge and kwow-how
- The notion of significant epistemological quantity still need to be clarified
- Possibility to define by extension an metric that can be used to determine the proximity (or distance) between the mathematical problems (Da Ronch, 2022; Da Ronch & Gravier, 2024)

References

- Artigue, M. (2014). Perspectives on design research: the case of didactical engineering. In A. Bikner-Ahsbahs, C. Knipping, N. Presmeg (Eds.), Approaches to qualitative research in mathematics education: examples of methodology and methods (pp. 467–496). Springer. https://doi.org/10.1007/978-94-017-9181-6.17
- Brousseau, G. (1997). Theory of didactical situations in mathematics. KluwerAcademic Publishers. https://doi.org/10.1007/0-306-47211-2
- Da Ronch, M. (2022). *Pratique de l'activité mathématique en médiation: modèles didactiques et conception d'ingénieries* (Doctoral dissertation, Université Grenoble Alpes [2020-...]). <u>https://theses.hal.science/tel-04089443</u>
- Da Ronch, M., & Gravier, S. (2024). Didactical engineering: an approach for carrying out an epistemological analysis from research problems in mathematics. *Proceedings of Fifth Conference of the International Network for Didactic Research in University Mathematics (INDRUM2024, 10-14 June 2024)* (pp. 629-630). Barcelona, Centre de Recerca Mathematica (CRM) and INDRUM.
- Garey, M. R., & Johnson, D. S. (1979). Computers and intractability (Vol. 174). San Francisco: freeman.
- Giroud, N. (2011). Etude de la démarche expérimentale dans les situations de recherche pour la classe (Doctoral dissertation, Université de Grenoble). https://theses.hal.science/tel-00649159v1
- Godot, K. (2005). *Situations recherche et jeux mathematiques pour la formation et la vulgarisation. Exemple de la roue aux couleurs* (Doctoral dissertation, Université Joseph-Fourier-Grenoble I). https://theses.hal.science/tel-00102171v1
- Gravier, S., & Ouvrier-Buffet, C. (2022). The mathematical background of proving processes in discrete optimization—exemplification with Research Situations for the Classroom. ZDM–Mathematics Education, 54(4), 925-940. <u>https://doi.org/10.1007/s11858-022-01400-3</u>
- Grenier, D. & Payan, C. (2003). Situations de recherche en "classe", essai de caractérisation et proposition de modélisation. In V. Durand-Guerrier & C. Tisseron (Eds), Actes du SéminaireNational de didactique des mathématiques (pp. 189-205) Paris: IREM de Paris 7.
- Ouvrier-Buffet, C. (2003). Construction de définitions/construction de concept: vers une situation fondamentale pour la construction de définitions en mathématiques (Doctoral dissertation, Université Joseph-Fourier-Grenoble I). <u>https://theses.hal.science/tel-00005515v1</u>
- Wang, H. (1961). Proving theorems by pattern recognition—II. Bell system technical journal, 40(1), 1-41. <u>https://doi.org/10.1002/j.1538-7305.1961.tb03975.x</u>

