

Practical Automated Program Analysis
for Improving Java Software

Repairing Static Analysis Violations and
Analyzing Exception Behavior

presented by

Diego Marcilio

under the supervision of

Prof. Carlo Alberto Furia

November 2023

Dissertation Committee

Prof. Gabriele Bavota Università della Svizzera italiana, Switzerland
Prof. Matthias Hauswirth Università della Svizzera italiana, Switzerland
Prof. Maurício Aniche Delft University of Technology, The Netherlands
Prof. Harald Gall University of Zurich, Switzerland

Dissertation accepted on 23 November 2023

Research Advisor
Prof. Carlo Alberto Furia

Ph.D. Program Co-Director Ph.D. Program Co-Director

Prof. Walter Binder Prof. Stefan Wolf

i

I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole
or in part, to qualify for any other academic award; and the content of the thesis is the result
of work which has been carried out since the official commencement date of the approved
research program.

Diego Marcilio
Lugano, 23 November 2023

ii

Abstract

Finding and fixing bugs are among the most time-consuming activities of the software devel-
opment process. This thesis presents work that increases the level of automation in finding
and fixing bugs in Java software: by automatically repairing static analysis warnings and by
analyzing exception behavior. In both directions, we aim to provide actionable feedback to
developers and to demonstrate practical applicability.

Developers widely use static analysis tools (SATs) to identify bugs early in the devel-
opment process. However, using SATs comes with challenges, such as too many reported
warnings, false positives, and limitations in detecting issues that relate to libraries and ex-
ternal project dependencies.

To improve the usability of SATs when they report a high number of violations, we pro-
pose to automatically address some of the violations by synthesizing source-code fixes. We
designed a technique, SpongeBugs, to produce fixes for violations of simple, widely used
rules detected by popular static analyzers (SonarQube and SpotBugs). Our technique can
often generate fixes quickly and that are similar to those developers would write. In an ex-
perimental evaluation, maintainers of popular Java open-source projects accepted 87% of
946 fixes generated automatically by SpongeBugs.

To widen the scope of static analysis to issues involving external libraries, we focus on
exception behavior, which is notoriously often poorly documented, associated with anti-
patterns, and a frequent source of software failures. We first examined how Java developers
test exception behavior and identified the most frequently tested exceptions. Building on
these insights, we introduced the WIT technique, which automatically extracts precise excep-
tion preconditions in Java methods. We demonstrated several practical applications of using
WIT on realistic programs. First, we used WIT’s extracted preconditions to add to and improve
the Javadoc documentation of popular Apache Commons projects: Lang, IO, and Text. We
then repurposed WIT so that it could analyze client code to detect calls that violate the ex-
ception preconditions of library calls. We applied this approach to 1,523 open-source Java
projects in 21 widely used open-source Java libraries, including the Java Development Kit
(JDK); we found 4,115 cases of calls to library methods that may result in an exception. To
our knowledge, this kind of analysis of exceptions that originate in calls to external libraries
is beyond the capabilities of most commercial static analyzers.

Overall, our contributions were designed so that they can work with limited requirements
on the analyzed codebases. This emphasizes providing practical tools and actionable and
reliable feedback, which can help developers be more productive when finding and fixing
bugs.

iii

iv Abstract

Contents

Contents iii

List of Figures ix

List of Tables xi

I Prologue 1

1 Introduction 3
1.1 Thesis Statement . 5
1.2 Research Contributions . 6

1.2.1 Automated Program Repair of Static Analysis Warnings 6
1.2.2 Actionable Static Analysis of Exception Behavior 7

1.3 Outline . 8

2 State of the Art 9
2.1 Introduction . 9
2.2 Automated Program Repair . 9

2.2.1 General-Purpose Automated Program Repair 9
2.2.2 Large-Language Models and Automated Program Repair 12
2.2.3 Practical Automated Program Repair Approaches 14
2.2.4 Summing Up . 16

2.3 Static Analysis Tools . 17
2.3.1 Static Analysis Warnings . 17
2.3.2 Static Analysis and Automated Program Repair 17
2.3.3 Summing Up . 19

2.4 Exception Behavior in Java . 19
2.4.1 Testing and Debugging . 19
2.4.2 Precondition Inference . 20
2.4.3 Repairing Exception Behavior . 22
2.4.4 Exception API Misuses . 23
2.4.5 Summing Up . 23

v

vi Contents

II Repairing Static Analysis Warnings 25

3 Automatically Generating Fix Suggestions in Response to Static Code Analysis
Warnings 27
3.1 Introduction . 28
3.2 SpongeBugs: Approach and Implementation . 29

3.2.1 Rule Selection . 29
3.2.2 How SpongeBugs Works . 31

3.3 Empirical Evaluation of SpongeBugs: Experimental Design 32
3.3.1 Research Questions . 32
3.3.2 Selecting Projects for the Evaluation . 33
3.3.3 Submitting Pull Requests With Fixes Made by SpongeBugs 35

3.4 Empirical Evaluation of SpongeBugs: Results and Discussion 38
3.4.1 RQ1: Applicability . 38
3.4.2 RQ2: Effectiveness and Acceptability . 49
3.4.3 RQ3: Performance . 52
3.4.4 RQ4: Student Projects . 56
3.4.5 RQ5: Code with Behavioral Bugs . 56
3.4.6 Additional Findings . 60

3.5 Limitations and Threats to Validity . 60
3.6 Conclusions: SpongeBugs . 61

III Analyzing Exception Behavior 63

4 How Java Programmers Test Exception Behavior 65
4.1 Introduction . 66
4.2 Background . 67

4.2.1 Exceptions: What They Are For . 67
4.2.2 Exception Testing Patterns . 67

4.3 Study Design . 70
4.3.1 Research Questions . 70
4.3.2 Project Selection . 70
4.3.3 Analysis Process . 71

4.4 Results . 72
4.4.1 RQ1: How often is exception behavior tested? 73
4.4.2 RQ2: What kind of exception behavior is tested? 75
4.4.3 RQ3: What coding patterns are used for exception testing? 79

4.5 Limitations and Threats to Validity . 85
4.6 Applications of Findings and Future Work . 85
4.7 Conclusions . 87

Contents vii

5 Lightweight Precise Automatic Extraction of Exception Preconditions in Java
Methods 89
5.1 Introduction . 90
5.2 Showcase Examples of Using WIT . 91

5.2.1 Missing Documentation . 91
5.2.2 Inconsistent Documentation . 92

5.3 How WIT Works . 93
5.3.1 Parsing and CFG . 94
5.3.2 Local Exception Paths . 94
5.3.3 Global Exception Paths . 95
5.3.4 Modular Analysis . 95
5.3.5 Path Feasibility . 96
5.3.6 Exception Preconditions . 98
5.3.7 Heuristics and Limitations . 99

5.4 Experimental Evaluation . 101
5.4.1 Experimental Subjects . 102
5.4.2 Experimental Setup . 102

5.5 Experimental Results . 105
5.5.1 RQ1: Precision . 105
5.5.2 RQ2: Recall . 105
5.5.3 RQ3: Features . 108
5.5.4 RQ4: Modularity . 109
5.5.5 RQ5: Efficiency . 113
5.5.6 RQ6: Usefulness . 113

5.6 Threats to Validity . 116
5.7 Discussion of Applications . 117

5.7.1 Documentation . 118
5.7.2 Generating Tests . 119

5.8 Conclusions . 120

6 Towards Code Improvements Suggestions from Client Exception Analysis 123
6.1 Introduction . 123
6.2 From Exception Preconditions to Code Improvements 125

6.2.1 An Example of Potential Throw Detection 125
6.2.2 Code Improvements . 126
6.2.3 Detecting Potential Throws Automatically 126

6.3 Experimental Evaluation . 127
6.3.1 Potential Throw Detector Implementation 127
6.3.2 Empirical Study: Design . 128
6.3.3 Empirical Study: Quantitative Results . 128
6.3.4 Empirical Study: Qualitative Discussion 129

6.4 Conclusions . 132

viii Contents

IV Epilogue 133

7 Conclusions 135
7.1 Catering to Industry’s Needs . 136
7.2 Closing Words . 138

V Appendices 139

8 Additional Contributions on Static Analysis Violations 141
8.1 C# Replication of SpongeBugs . 141
8.2 A Bot for Fixing Static Analysis Violations via Pull Requests 142

9 Other Contributions on Software Engineering Topics 143

10 List of Submitted Pull Requests 145
10.1 SpongeBugs . 146
10.2 WIT . 147

Bibliography 149

Figures

4.1 The main coding patterns that programmers can use to test for exception be-
havior in Java. 68

4.2 Violin plots of the analyzed projects’ total number of commits, number of
contributors, and initial commit date of their test code. 73

4.3 Violin plots of the projects’ size measures and patterns used in their tests. . . 74
4.4 Violin plots of the analyzed projects’ total number of tests and median size of

a test. 76

5.1 An overview of how WIT works. 93

ix

x Figures

Tables

3.1 The 11 static code analysis rules that SpongeBugs can provide fix suggestions
for. 30

3.2 Characteristics of the 15 projects we selected for evaluating SpongeBugs. . . 34
3.3 The student projects we analyzed using SpongeBugs. 35
3.4 A summary of the code included in Defects4J, grouped by the Java project it

comes from. 36
3.5 An overview of the submitted pull requests’ characteristics. 37
3.6 Pull requests submitted for each rule with the total percentage of accepted fixes. 38
3.7 The number of warnings detected by SonarQube and the number of warnings

fixed after running SpongeBugs. 39
3.8 False positives for which SpongeBugs provides a fix for a violation not detected

by SonarQube. 42
3.9 False negatives for which SpongeBugs provides no suggestions. 46
3.10 Summary of running test suites in all projects. 49
3.11 Descriptive statistics summarizing 5 repeated runs of SpongeBugs. 53
3.12 Descriptive statistics summarizing 5 repeated runs of SpongeBugs on the 5

largest files in projects mssql-jdbc. 53
3.13 Number of additional fixes when running SpongeBugs without violation tex-

tual pattern. 55
3.14 Summary of 5 repeated runs of SpongeBugs with and without violation textual

pattern filtering (step 1). Time is measured in minutes. 55
3.15 Overview of student projects and violations pertaining to our 11 SonarQube

selected rules. 57
3.16 For each student project, the number of warnings detected by SonarQube and

the number of warnings fixed after running SpongeBugs. 58

4.1 Overview of exception testing patterns supported by libraries or frameworks. 68
4.2 Overview of build systems used by the analyzed projects. 72
4.3 Characteristics of projects with some tests. 73
4.4 Classification of exception classes according to their origin, kind, and usage. . 76
4.5 Percentage of exception tests and projects using any of the 5 coding patterns. 80
4.6 Percentages of combinations of patterns used by projects in their exception

tests. 81
4.7 Regression estimates of each characteristic’s contribution to a test’s size. . . . 83

5.1 Exception preconditions inferred by WIT. 106
5.2 WIT’s recall using two datasets DSC and DPA. 107

xi

xii Tables

5.3 Impact of using WIT’s modular analysis for five projects. 112

6.1 Ten of the most widely called library methods in our experiments. 130

10.1 Pull requests submitted as part of the evaluation of the SpongeBugs (Chap-
ter 3) work. 146

10.2 Pull requests submitted as part of the evaluation of the WIT (Chapter 5) work. 147

Part I
Prologue

1
Introduction

Debugging—finding and fixing bugs—is a recurring and time-consuming task for developers:
it can take from 50% [70] to 80% [106] of a software product’s budget. Finding bugs by
itself is a complex task, and programmers employ several tactics for identifying them [106].
Some widespread development practices involve writing different kinds of tests (e.g., unit
and integration) and using static analysis tools (SATs) [125]. By working statically on the
source or byte code of a project, these tools search for patterns that may indicate problems—
bugs, vulnerabilities, or failures to follow formatting conventions. SATs are used on large
code bases both in commercial and open-source settings.

Despite providing several benefits, using SATs also comes with disadvantages [89]. A
key problem is the high number of false positive warnings—those that do not correspond to
actual mistakes. It is likely for a developer to find thousands of warnings when executing a
static analysis tool for the first time in a project; it is unlikely that a developer wants to act
on all of them. Another related issue is that understanding a problem indicated by a warning
and coming up with a suitable fix is often nontrivial. Finally, the set of warnings SATs can
detect is limited; one under-represented case is when the code interacts with third-party
libraries—an ubiquitous practice in modern software development. A library method may
throw an exception, for example, to signal one of its arguments should not be null. SATs
do not generally report exceptions that originate in an external library.

To alleviate these problems, our research explores two related directions: i) automatic
repair of static analysis warnings; and ii) analysis of exception behavior. By automatically
repairing static analysis warnings, we can aid developers make the most out of tools that are
already commonly integrated into developers workflows. By analyzing exception behavior,
we can address a common source of failures when using libraries. In our work, we often
trade-off generality in favor of practicality; focusing on these specific topics allows our tech-
niques to automatically yield actionable feedback while executing on large projects with low
requirements (e.g., directly on source-code, without requiring to build a whole project with
all its dependencies).

We adopt the paradigm of Automated Program Repair (APR) to automatically fix SATs
warnings. APR’s ultimate promise is to automate the detection and fixing of bugs, ultimately
improving developers’ productivity. It generally works by identifying incorrect behavior in

3

4 Introduction

a program against a given specification and then generating fixes to the source code that
conform to that specification. Most APR techniques rely on tests to identify buggy behavior
and to validate generated fixes [70, 142]. More concretely, a test-based technique identifies
bugs that are revealed by some failing tests and generates changes to the program that make
all tests pass. Recent studies [92, 115] show that the over-reliance on tests severely hinders
APR’s applicability in real world scenarios. Test-based APR approaches are mostly evaluated
on benchmarks of bugs, which curate reproducible bugs from popular open-source projects,
where each bug is tied to one or more failing tests that exposes it. However, these bug-
exposing tests are almost entirely future tests [115]: they were written after discovering a
bug (e.g., following a user bug report). In Defects4J [91], a widely used Java benchmark for
APR, 381 (96%) of all tests are future tests [115]. Future tests are not representative of real-
world scenarios [92]. The over-reliance on such tests to pin-point a bug’s location, fostered
by the high usage of benchmarks of bugs, may partially explain why APR techniques are
mostly not applicable to realistic development scenarios. Indeed, Winter et al. [197] found
that only 17 (6%) APR papers out of 264 engage with developers in their evaluations.1

Repairing Static Analysis Violations. To achieve greater APR applicability, we focus on
fixing SATs warnings, which allows us to circumvent the use of tests in the APR pipeline. A
warning pinpoints the bug’s location, therefore there is no need for a failing test. If a SAT
does not report a warning after a fix is applied, the fix can be considered valid. With this in
mind, we developed SpongeBugs, a technique that can produce fixes for 11 Java violations
of rules frequently detected by widely used Java static analyzers (SonarQube and SpotBugs).
The technique scales to real projects and generates fixes similar to what developers would
write, as suggested by our experimental evaluation: maintainers of popular Java open-source
projects accepted 87% of 946 fixes generated by SpongeBugs.

In programming languages like Java, a method’s implementation may throw an exception
to signal that a call violates its precondition. Ideally, a method’s exception behavior should
be described in the method’s documentation and thoroughly tested. However, a method’s
documentation can become incomplete or inconsistent with its implementation [150, 210],
and, compounding the problem, a project’s test suite may insufficiently exercise exceptional
behavior [126]. Unsurprisingly, exception behavior is a frequent source of failures, and is
often implicated in anti-patterns (e.g., empty catch blocks, no informative messages). As
APIs typically throw exceptions to signal invalid preconditions [126], uncaught exceptions
are often symptoms of API misuses—a common cause of bugs [4]. To our knowledge, static
analyzers typically cannot generally report exceptions that may be thrown by an external
library.

Analyzing Exception Behavior. To address these exception related difficulties, we in-
creasingly explored Java exception behavior. First, we investigated how Java developers test
exceptions with JUnit. We found that unchecked exceptions such as IllegalArgumentException
and NullPointerException figured among the most tested exceptions. These same excep-
tions are most frequently implicated in API misuses [196] and Android app bugs [37], and
are among those often insufficiently documented [97, 173, 207]. Given that these frequently
thrown exceptions may be used to signal precondition violations, we developed WIT, a tech-

1Our work on SpongeBugs (Chapter 3) is among those few 6% that engage with developers.

1.1 Thesis Statement 5

nique to automatically extract exception preconditions in a precise manner. WIT performs
a lightweight static analysis of Java classes for checking which exception program paths
are feasible by symbolically executing them. WIT only needs the source code of the classes
under analysis, and it employs several heuristics to remain practical. We confirmed WIT’
extracted preconditions to be 100% precise in our evaluation on 46 large real world Java
open-source projects. Automatically extracted precise preconditions can directly help devel-
opers writing documentation (and tests). We demonstrated several practical applications of
using WIT on realistic programs; we used WIT’s extracted preconditions to add to and improve
the Javadoc documentation of highly popular Apache Commons projects (i.e., Lang, IO, and
Text). These projects figure among the most mature, popular, documented, and tested Java
libraries [150]. Apache maintainers accepted and merged 7 pull requests containing 170
additions and improvements to the projects’ Javadoc. Detecting calls that may throw ex-
ceptions is yet another practical application of having precise exception preconditions. We
repurposed WIT to store libraries’ exceptions preconditions in a database so that it can run
on client code to detect calls that violate these preconditions. We applied this approach in
1,523 open-source Java projects to automatically detect calls that can potentially throw ex-
ceptions in 21 widely used open-source Java libraries, including the Java Development Kit
(JDK). We found 4,115 cases of calls to library methods that may result in an exception.
To our knowledge, exceptions that originate in calls to external libraries are not generally
covered by Java static analyzers.

1.1 Thesis Statement

We formulate our thesis statement as follows:

Maximizing practicality for source code tools in non local environments involves
minimizing assumptions and requirements, aiming for high precision, and targeting
amenable problems—even if they seem uncomplicated.

We can see “minimizing assumptions and requirements” under a practicality lens. Ide-
ally, we want to lower the barriers for adopting a tool and to reduce the constraints for its
applicability. For instance, asking developers to add seemingly simple Java annotations (e.g.,
@NonNull) may deter practitioners to use compile-time tools [52, 69]. And a tool that does
not scale to realistic-size codebases is unlikely to be of usage outside academic settings.

Designing for high precision is a well-accepted guideline to increase practitioners en-
gagement with a tool. Christakis and Bird [34] suggest a precision no lower than 75–80%:
“Developers care much more about too many false positives than about too many false neg-
atives”. The authors also add that “high false positive rates lead to disuse”.

Distinguishing between the contexts developers use tools is essential for maximizing
practicality and minimizing assumptions. Vassallo et al. [190] identify three contexts on
how developers engage with static analysis tools: local programming, continuous integra-
tion, and code review. Local programming happens when developers write code in integrated
development editors (IDEs) and text editors. The other two contexts occur after local pro-
gramming; they may happen after a long time since the code was written, and may involve

6 Introduction

a developer different than the original author. We posit that, in a local context, develop-
ers may tolerate warnings and fixes with some uncertainty degree of correctness. Barik et
al. [13] support our conjecture by proposing an idea of “slow fixes”: developers, while in the
IDE, may explore different solutions for a warning. On the other hand, fixes and warnings
in a non local context should strive to be as correct as possible, even if that incurs targeting
unambiguous and seemingly simple problems. Another source of motivation for our work
is SAPFIX [130], the first APR approach deployed into production on industrial software of
millions of lines of code, whose “repairs aim to tackle the most prevalent (yet arguably also
the most simple) bugs, fixable by small patches, comparatively easily checked by the final
human gate-keeper.” [130].

In all, we aim to minimize assumptions and requirements for source code tools in order
to maximize practicality. By targeting amenable problems with high precision (i.e., low
false positive rate), our tools outputs can generally be trusted without requiring manual
validation.

1.2 Research Contributions

The contributions of our research can be grouped in two high-level categories: i) using
static analysis for Automated Program Repair; and ii) targeting exception behavior for static
analysis.

1.2.1 Automated Program Repair of Static Analysis Warnings

Static analysis tools are widely used by many software companies and consortia to identify
bugs and for software quality assurance. As static analysis works statically on the source code
(i.e., without running the program or tests), using it for bug detection and fixing does not
depend on whether tests are available. For this goal, we developed SpongeBugs, a technique
that can produce fixes for warnings of Java rules detected by static analyzers SonarQube
and SpotBugs. The technique is fast and generates fixes similar to what developers would
write, as suggested by our experimental evaluation: maintainers of popular Java open-source
projects accepted 87% of 946 fixes generated by SpongeBugs. This work [129]was published
as follows:

Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

Diego Marcilio, Carlo A. Furia, Rodrigo Bonifácio, Gustavo Pinto. In Journal of Systems and Software
(JSS 2020), Volume 168, 2020

C# is a popular object-oriented language which shares similarities with Java (e.g., sim-
ilar syntax, top types, garbage collection) but also interesting differences (e.g., no checked
exceptions in C#, no operator overloading in Java).2{2} We replicated [155] our work of
automatically fixing Java static analysis warnings for the C# language:

2Throughout the text, we use plain numbers for standard footnotes (shown in the same page, as usual). For
URL references (e.g., GitHub source code and pull requests), we use superscript numeric marks, and list them
at the end of the thesis after the bibliographic references. These superscripts are in blue between curly braces{1}

so that they can be easily distinguished from regular footnotes.

1.2 Research Contributions 7

Static Analysis Warnings and Automatic Fixing: A Replication for C# Projects

Martin Oddermatt, Diego Marcilio, Carlo A. Furia. In Proceedings of the 29th IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER 2022) – Reproducibility Studies
and Negative Results (RENE) Track, pp. 805–816, 2022

Automatically integrating the generated fixes into a codebase is a desirable feature that
increases the level of automation. However, this integration has its own challenges; we
report our experience on implementing and deploying an automated bot that submits pull
requests with fixes for SATs warnings [27]:

C-3PR: A Bot for Fixing Static Analysis Violations via Pull Requests

Antonio Carvalho, Welder Pinheiro Luz, Diego Marcilio, Rodrigo Bonifácio, Gustavo Pinto, Edna Dias
Canedo. In Proceedings of the 27th IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER 2020) – Technical Research Track, pp. 161–171, 2020

1.2.2 Actionable Static Analysis of Exception Behavior

Exception behavior in Java is frequently linked to poor programming practices; it’s often
undocumented, tied to anti-patterns, and implicated in bugs. We incrementally investigated
and analyzed Java exception behavior to ultimately suggest improvements to client code
when its interaction with an external library could potentially throw an exception.

We gained valuable insights of frequently thrown exceptions by looking into how Java
developers test exceptions [126]:

How Java Programmers Test Exceptional Behavior

Diego Marcilio, Carlo A. Furia. In Proceedings of the IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR 2021) – Research Technical Track, pp. 207–218, 2021

We then developed a static analysis technique that automatically extracts exception pre-
condition by analyzing the Java source code of public methods. The work resulted in the
following publication, awarded with an IEEE TCSE Distinguished Paper Award [127]:

What Is Thrown? Precise Automatic Extraction of Exception Preconditions in Java Methods

Diego Marcilio, Carlo A. Furia. In Proceedings of the IEEE International Conference on Software Main-
tenance and Evolution (ICSME 2022) – Research Technical Track, pp. 340–351, 2022

In a follow-up work, we extended the technique to support modular analysis: the reuse
of preconditions previously extracted when analyzing different projects. Modular analysis
allowed us to not only extract more preconditions, but to also extract preconditions occurring
in a project’s dependencies, which are often not immediately identifiable. The results of
this work has been accepted by the Spring Journal of Empirical Software Engineering as an
extension of the previous publication:

Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

Diego Marcilio, Carlo A. Furia. In Empirical Software Engineering (EMSE 2023), To appear, 2023

Building on the modular analysis of the previous work, we analyzed client code using
several popular libraries, in order to find possible violations of the libraries’ exception pre-
conditions. Exception behavior in clients often naturally suggests improvements to the docu-
mentation, tests, runtime checks, and annotations of the clients. The work has been accepted

8 Introduction

in the “New Ideas and Emerging Results Track” (NIER) of the 2023 International Conference
on Software Maintenance and Evolution (ICSME):

Towards Code Improvements Suggestions from Client Exception Analysis

Diego Marcilio, Carlo A. Furia. In Accepted at 30th IEEE International Conference on Software Analysis,
Evolution and Reengineering (ICSME 2023) – New Ideas and Emerging Results Track (NIER) Track, To
appear, 2023

1.3 Outline

This dissertation is structured in the following chapters:

Chapter 2 presents an overview of the state of the art, including the most relevant litera-
ture to frame the two main topics covered in this thesis: i) using static analysis for Automated
Program Repair; and ii) targeting exception behavior for static analysis.

Chapter 3 describes our work on using static analysis for automated program repair. The
chapter describes the SpongeBugs work, our technique to fix static analysis warnings.

Chapter 4 presents our empirical investigation into how Java programmers test exception
behavior. Looking into exception tests can unveil commonly thrown exceptions and provide
additional sources of information and documentation on how these exceptions are triggered.

Chapter 5 describes our technique to automatically infer exception preconditions from
Java methods and constructors. Exception preconditions can be used to add or improve
documentation and outline precise conditions when an exception is thrown.

Chapter 6 discusses experiments applying the idea of suggesting code improvements for
client code when an exception may be thrown in calls of library APIs. This work builds on
the technique of Chapter 5, as we first analyze the exception preconditions from popular
Java libraries to detect possible thrown exceptions in client code using these libraries.

Chapter 7 concludes this dissertation by summarizing our work and indicating open re-
search directions based on the results we achieved.

2
State of the Art

2.1 Introduction

In this chapter, we overview the literature related to the two topics covered in this the-
sis: (i) repairing static analysis warnings; and (ii) exception behavior analysis. First, in
Section 2.2, we introduce Automated Program Repair (APR) and summarize its main lim-
itations in terms of practical applicability. We mostly focus on studies targeting the Java
language, which dominates the current APR literature [56, 70, 116, 142]. We discuss some
practical APR approaches and the trade-offs they make to achieve some practicality. Then,
in Section 2.3, we review the literature on static analysis tools and link them to APR. Finally,
we discuss the research on Java exception behavior in Section 2.4. We focus our research,
and state of the art discussion, on the Java programming language as it has been one of
the most popular languages during recent years.{3},{4} Moreover, Java dominates the current
APR literature [56, 70, 116, 142].

2.2 Automated Program Repair

2.2.1 General-Purpose Automated Program Repair

The research area of Automated Program Repair (APR) has been gaining increased attention
in the last decade [142]. APR aims to generate fixes at the source code level to remove a
bug in a way that conforms to a specification [70]. As described by Gazzola et al. [70], the
APR process can be typically decomposed into three steps. First, fault localization identifies
locations that may be responsible for a bug. Then fix generation modifies the locations of the
source code indicated by the localization step. Several techniques can drive the generation of
fixes, ranging from predefined templates [99], random mutation operators [76], constraint
solving [135], to machine learning [10, 16]. The third and final step is validation, which
checks if the generated fix actually repairs the program.

Gazzola et al. [70] classify APR approaches into two categories when considering the
strategies for generating fixes and validating them. Correct-by-construction approaches [135,

9

10 State of the Art

136, 153, 200] formally encode the expected correct behavior, and produce fixes guaranteed
to remove the bug. Generate-and-validate approaches [55, 76, 99] generate fixes by exploring
a space of potential fixes for a given bug and then validate the correctness of the potential
fixes. Test-based approaches are the most common “flavor” of the generate-and-validate
category; they leverage test suite executions for both the localization and the verification
steps [113, 115, 116].

In practice, tests guide most of the APR approaches [56]. Fault localization relies on fail-
ing test cases to identify potential buggy code locations. Spectrum-based fault localization—
the most popular fault-localization technique used in APR [70, 113]—leverages the execu-
tion traces of test cases to compute the fault likelihood of a given code location. Its under-
lying idea is that code locations executed by many failing test cases and few passing test
cases are likely to be faulty, and vice versa [70]. On the other hand, the validation step of
APR uses the test cases to validate generated patches. Since formal specifications are mostly
unavailable [14, 106], while tests are generally more available, test suites are used as (par-
tial) specifications [116]. A given patch passes the verification step if all available tests are
passing [70].

The over-reliance on test suites—with the requirement of failing test cases—may sig-
nificantly hinder the practical usability of APR techniques. The empirical evaluations of a
large portion of APR techniques rely on future tests: failing bug-triggering tests that are only
added or updated after the bug has been detected and manually fixed [115]. Liu et al. [115]
found that state-of-the-art APR techniques only fix at most 6 (1.5%) bugs out of 395 when
dropping future tests from the test suites used in their evaluations. Such a low performance
is explained by Ginelli et al. [73]: “it is hard or even impossible to repair a fault without
selecting a good location for the fix”. These future tests are often present in the benchmarks
of bugs used in the evaluation of APR techniques.

Benchmarks of bugs facilitate leveraging tests for APR activities; they systematically col-
lect reproducible bugs, where each bug is a pair of a buggy program version and a fail-
ing test that exposes it [121]. Benchmarks provide reliable ways of ensuring the gener-
ality of research results and enable the comparison of different techniques on a common
ground [121]. However, the danger of over-fitting a benchmark is real. Indeed, recent stud-
ies [56, 115, 116] highlight that Java APR approaches are biased towards Defects4J [91], a
widely used1 Java benchmark of bugs that contains bugs from popular open-source projects.
Researchers found [56, 115] that many tools not only fix 10-30% more bugs when using
Defects4J instead of other benchmarks but are also hard-coded in non-trivial ways to work
only with Defects4J.

Liu et al. [115] provide further criticism of this Defects4J bias in APR research. The
Defects4J authors dedicated significant effort to curate the collection to facilitate fault lo-
calization and validation. This effort includes adding future tests, rewriting previous test
cases to expose buggy locations, and inserting assertions in program source code. There is
a staggering total of 381 (96%) future test cases in the 395 bugs in Defects4J. Two other
benchmarks, Bugs.jar [171] and Bears [121], share similar rates with 94% and 92% of future

1Duriex et al. [56] analyzed 24 Java test-based APR tools and found that 22 of those were evaluated on
Defects4J.

2.2 Automated Program Repair 11

tests, respectively.
Soremekun et al. [177] took a deep dive into fault localization techniques and how “in

the lab” evaluation assumptions fare in the real world. The authors identified 3 assumptions
that researchers often make and investigated how they affect fault localization evaluations.
In summary, the assumptions are:

• Perfect Bug Understanding: occur when assuming that locating and examining the
first faulty statement (out of several) is sufficient to explain and fix the bug;

• Fix Location: occur when assuming that a fix location coincide with a fault location
(i.e., the root cause and the fix location may be different);

• Single Fault Location: occur when assuming that a single contiguous location is suf-
ficient for locating a bug (i.e., a bug location may be spread e.g., lines 6 and 10).

They performed a controlled experiment with 18 automated fault localization, 2 APR tech-
niques (GenProg and Angelix), and 76 professional developers. Although they studied C pro-
grams, the authors’ findings are likely to generalize to fault localization in other languages as
the techniques follow the same idea. In an analysis of 63 papers from 7 high-ranked Software
Engineering venues,2 the authors found that the Fix Location assumption (the most preva-
lent one) is present in 76% of the evaluations. According to the authors, this assumption is
also present in Defects4J [91]. When assessing developers’ thoughts about the assumptions,
they write a concerning statement: “fix location assumption is the least sound and most
severe debugging assumption”. In all, 60% of the developers believe the assumptions are
unrealistic in practice, as they lead to “imprecise, wrong or inadequate bug diagnoses”.

Kabadi et al. [92] follow up on Liu et al.’s work [115] to build a dataset of bugs without
any future tests. The authors collected 102 bugs by manually inspecting continuous integra-
tion (CI) failures from 40 large programs. The idea of considering CI failures is to leverage
regression errors: existing tests, that were previously passing, fail after the latest source
code modification. The comparison between bugs exclusively exposed by regression tests
against bugs exposed by future tests shed light on how the latter hinders APR’s practicality.
The number of bug-exposing tests from the CI failures are more than six times larger than
the Defects4J ones and they are three times harder to localize (i.e., Defects4J bug-exposing
tests have a much higher chance to lead to the location of a bug). Kabadi et al. mention
that the higher the number of bug-exposing tests, the larger the search space for repair will
be, as larger parts of code may be deemed suspicious. Less localizable means that the iden-
tified regression tests have a smaller chance to lead to the root causes of the bugs; there is
a higher number of methods that need to be repaired among the ones explicitly called by
bug-exposing test cases. The authors aptly summarize the conceptual problem—beyond the
technical fault-localization one—by highlighting the following:

[...] using future test cases may not be able to accurately estimate how well APR
would work in practice. Since developers already know where and how to fix

2The authors used the CORE Conference Ranking{5} to select four conferences: ICSE, FSE, ASE, and MSR.
The three chosen journals were: TSE, EMSE, and TOSEM.

12 State of the Art

the bugs, tests created in this case may encapsulate knowledge gained only after
bugs are fixed.

2.2.2 Large-Language Models and Automated Program Repair

As of 2023, large pre-trained language models (LLMs) are in the limelight. General-purpose
models (e.g., GPT3 [23]) have been fine-tuned to work with code (e.g., Codex). Due to these
capabilities, researchers have been exploring how LLMs perform on several tasks, including
APR. Despite showing a lot of promise, LLMs adoption also bring challenges [61] regarding
bias (e.g., training mostly done in the English language), legal compliance (e.g., copyright
and licensing), and security vulnerabilities (e.g., suggesting previously learned vulnerable
code). This section aim to discuss both LLMs promises and limitations and how they fit in
APR.

Two 2022 studies evaluated how Codex [33] fares in APR. In the first study, Prenner et
al. [164] setup an experiment on the QuixBugs benchmark [110], a dataset of 40 Java and
Python algorithm implementations with one-line bugs. The authors feed a buggy function
to Codex and ask the model (i.e., prompt-engineering) to generate a complete non-buggy
version. The authors found that Codex performed similarly to state-of-the-art learning based
APR. Moreover, Codex had better results with Python programs than Java; it fixed 50% more
bugs in Python. Kolak et al. [104] uses three versions of open-source models, alongside with
Codex, to evaluate the models also on QuixBugs. Instead, the authors ask the model to fix a
single line at a time, as opposed to a full function in [164]. In all, Prenner et al. found that
Codex fixed around 45-57% of the bugs in Python and 35–45% in Java; Kolak et al. found
better results when the model is applied to a single line at a time; Codex fixed 88.9% of the
bugs in Python and 50% in Java. Note that, in both studies, fault localization was not taken
in consideration; the authors fed the exact bug location to the model.

More recently, two 2023 studies conducted a more thorough evaluation of LLMs in APR.
Fan et al. [65] evaluated Codex on 113 Leetcode{6} Java problems. Leetcode is an online
platform with thousands of programming tasks ranging from easy to hard difficulty; it is com-
monly used for software engineering interview preparation. The authors experimented with
three types of fault localization to provide to Codex for generating patches: i) just telling
Codex “that a bug exists”; ii) providing candidate fix line numbers (by using Ochiai [1] as
fault localization); iii) using the statement itself as part of the instruction. The number of
correct patches was as following: i) 15 patches; ii) 11 patches; iii) 16 patches. Fan et al.
provide insightful directions for software development, leveraging the interplay of APR and
LLMs. They suggest a test-driven development (TDD) workflow where developers specify re-
quirements in natural language along with a few test cases. LLMs generate the program and
APR techniques could be used to fix small mistakes in the program by validating it via test
cases. Xia et al. [199] investigate how 9 LLMs perform on 5 different repair datasets in Java,
Python, and C. The authors experimented with different settings, including in particular: a)
complete function generation and b) single line generation. Similar to the previous study,
for a), the prompt does not provide a bug location. Instead for b), the prompt provides a
bug location. Codex was the best performing model. When analyzing rates of syntactic and

2.2 Automated Program Repair 13

semantic errors of the generated patches, Codex had close to 40% errors when performing
complete function generation and close to 80% on single line generation. In the case of
Defects4J, the authors found that Codex could fix 32 more bugs than 20 Java existing APR
techniques; 12 traditional APR tools (e.g., template-based) and 8 learning-based tools. For
the comparison, the tools were given perfect fault localization: the ground-truth fix loca-
tion is known. The authors also share useful findings and insights: “for real-world software
systems, it is still more cost-effective to first use traditional fault localization techniques to
pinpoint the precise bug locations and then leverage LLMs for more targeted patch genera-
tion”. The authors looked into whether the models were generating fixes that may have been
present in the training data (i.e., leakage). They found that for 93 Defects4J bugs, all LLMs
combined generated at least one correct patch that is different than the original developer
patch.

Bertrand Meyer, in his June 2023 article entitled “AI Does Not Help Programmers”, ex-
perimented with ChatGPT 4 and concluded that: “AI in its modern form, does not generate
correct programs. [...] These programs look correct but have no guarantee of correctness.”.
Meyer recognizes that ChatGPT provides value in assisting one writing code from scratch,
but it does not work for a professional programmer hoping for an effective pair-programmer.
The author envisions that for Generative AI for programming to work in serious professional
programming, “it will have to spark a wonderful renaissance of studies and tools in formal
specification and verification”.

In all, LLMs currently shine on assisting developers on “spending more time on the fun
part of their job—solving hard problems” by reducing the time spent on boilerplate code.{7}

Indeed, two works [19, 159] by Microsoft and GitHub researchers highlight Copilot’s impact
on productivity. The authors devised programming tasks (e.g., implement a “send email”
feature, implement an HTTP server in JavaScript) measuring completion time; they addi-
tionally surveyed the developers after the task. The researchers saw that participants spent
more time reviewing code than writing the code itself, and they could complete tasks 55.8%
faster than developers that were not using Copilot. In August 2023, Zhong and Wang [209]
analyzed whether API misuses are present when recent LLMs (GPT-3.5, GPT-4, Llama-2, and
Vicuna-1.5) are prompted to answer 1,208 StackOverflow Java questions studied in a previ-
ous work by Zhang et al. [206]. The questions pertain to JDK and Android APIs, including
string processing, data structures, and IO. They found that among all the answers that con-
tain executable code, 57-70% of the code snippets contain some API misuse. An interesting
direction may be to give extra prompts to the model (e.g., ask it to circumvent the misuse) or
provide different and/or equivalent prompts. On the latter, Mastropaolo et al. [132], found
that Copilot can generate different code recommendations given semantically equivalent but
different Javadoc descriptions. Some correct recommendations could only be achieved us-
ing a semantically equivalent description. Another promising direction is what Ciniselli et
al. [35] call “adaptive recommendations”: recommended code that is automatically adapted
to the code under development; a LLM should e.g., reuse identifiers and preserve the coding
style. As of October 2023, Amazon CodeWhisperer provides a customization that allows its
model to analyze internal codebases.{8},{9} The end result is that the model “understand the
intent, determines which internal and public APIs are best suited to the task, and generates

14 State of the Art

code recommendations”.

2.2.3 Practical Automated Program Repair Approaches

Most of APR evaluation has an over-reliance on benchmarks of bugs. As summarized by an
August 2023 blog post from Uber,{10} “Current automatic program repair focuses on standard
benchmarks, and neglects evaluation on real production code”. In this section, we summa-
rize actionable approaches, which may work with minimal requirements and assumptions,
and have been evaluated in real-world scenarios.

Industry Reports and Deployment

Perhaps the most practical APR approaches are those studied, devised, and deployed in in-
dustry. An early experience report from 2018 by Naitou et al. [146] describes the authors
experience on applying GenProg [76] and NOPOL [200] in a software development com-
pany. For the 22 bugs considered by the authors, none of them had failing bug-exposing
tests; despite the authors mentioning that the software was well tested. Naitou et al. [146]
state the developers were aware of test coverage tools, and aimed at maximizing coverage.
Nonetheless, the existent tests did not expose any of the considered bugs. This observation—
while anecdotal—may explain why most of the approaches we discuss in this “Practical APR”
chapter do not rely on traditional fault localization, enabled by bug-exposing failing tests.

Sapienz [124] is a search-based test generator of test cases that trigger crashes in An-
droid apps. SapFix [130] is an end-to-end repair approach that relies on Sapienz. It was
successfully deployed at Meta (formerly Facebook) targeting apps with millions of lines of
codes and hundred millions of users. When Sapienz identifies a crash, it feeds it to SapFix for
a repair attempt. SapFix uses GetAFix [10] to generate template fixes learned from previous
successful fixes. In order for a fix to be valid, it must pass all tests (including those generated
by Sapienz) and also clear any violations detected by the Infer static analyzer. The interplay
between Infer and Sapienz is very effective: bugs reported by both tools have a 98% fix rate.
The authors explain a likely reason for the high fix rate: “developers have a localisation
of both the likely root causing fault (from Infer) and a consequent failure (from Sapienz)”.
In other words, Infer seems to be doing the heavy-lifting of the fault localization, whether
Sapienz exposes the failure. As evidence supporting our goal of practicality, which includes
fixing seemingly simple problems, the authors summarize the approach: “Our repairs aim to
tackle the most prevalent (yet arguably also the most simple) bugs, fixable by small patches,
comparatively easily checked. . . ”.

Also deployed at Meta, GetAFix [10]3 fixes instances of commons bugs by learning from
past fixes. It target fixes for warnings detected by Infer and Error Prone, which includes
null dereferences, incorrect API calls and misuses of Java constructs. Our tool SpongeBugs
(presented in Chapter 3) and GetAFix share two common rules. The static analyzers are used
not only to pinpoint a bug, but also to validate the fix: a fix is valid if it removes the warning.

3GetAFix is integrated into SapFix but described in a different publication.

2.2 Automated Program Repair 15

GetAFix synthesizes different suggestions for each fix; its top-5 suggestions contained fixes
for 526 of the 1,268 collected bug fixes.

Bloomberg is another large company that shared its experience with APR [102, 198]. The
authors are very pragmatic about what they expect from APR: “Academics are often more
interested in the novel aspects of research and finding the next new solution; industry, on
the other hand, is more interested in the value they get from the technique, irrespective of
whether it is novel or not”. They provide further criticism of APR research: “Academia’s view
of APR is that it should strive to repair complex bugs automatically because this increases
the applicability of an APR tool and demonstrates the wider viability of the approach”. “Aca-
demic research will often claim that the work motivates new research for the improvement
of APR application to important and hard to solve bugs. The reality in our case is that,
counterintuitively, this makes an APR tool less applicable and less attractive to industry”.
Given all that, one can clearly understand their APR philosophy: “Bloomberg’s approach
was based much more around easy wins that nonetheless are seen to offer significant benefit
to developers, removing manual bug-fixing tasks and freeing up developer time.”.

Google’s DeepDelta [138] focuses on fixes for compilation errors that “follow a pattern
and are highly mechanical”. Their deep neural network approach learns patterns from pre-
vious fixes to suggest fixes for the two most costly errors in their dataset collected from 300
million lines of Java code. DeepDelta generated the correct repair change for 50% of 38,788
unseen compilation errors; correct changes are in the top three suggested fixes 86% of the
time. A repair is deemed correct if at least one of the 10 suggested repairs compiles and
exactly matches the fix the developer performed. The goal is to “help developers to repair
errors”, which may accommodate the not-so-high precision of 50% (lower than the 75-80%
range suggested by Christakis and Bird [34]).

Another deep learning-based APR approach [101] was deployed in Samsung to support
the migration of mobile applications from Java to Kotlin. The authors’ goal was to fix warn-
ings detected by SonarQube. They experimented with different models and report that the
best model could fix 19.5% of the violations. The paper does not seem to report any measure
of precision.

InferFix [88] is a transformer-based program repair framework paired with the Infer [26]
static analyzer. InferFix uses Infer to to detect, localize, and classify a bug; it considers three
kinds of bugs detected by Infer (null pointer dereference, resource leak, and thread safety
violation). Given a bug of these kinds detected by Infer, it retrieves semantically-similar
source code present in a database of historic bugs and fixes. The final step is to generate
a fix by prompting a large language model (Codex) finetuned on a dataset of prompts en-
riched with the information provided by Infer and the retrieved semantically-similar source
code. Codex is finetuned with the goal of teaching the model to generate a fix for the given
buggy code. Its input is the buggy code augmented with the bug’s location and category,
and similar fixes (retrieved from the historic database). The model finetuning required ex-
tremely powerful hardware (sixty four 32 GB V100 GPU). When evaluated on bugs for Java
and C#, InferFix could fix (top-1 prediction) between 57% and 82% of the three categories
of bugs. The authors deployed InferFix internally at Microsoft as a GitHub action and as an
Azure DevOps plugin operating as part of the continuous integration pipeline of Microsoft’s

16 State of the Art

Developer Division. Such a tight integration adds to what the authors call an end-to-end so-
lution: detection and localization of bugs, and fixing and validation of patches. When a pull
request is created for an analyzed project, InferFix proposes fixes for any of the considered
bugs detected by Infer. Each candidate patch is packaged as separate pull request, which is
individually validated.

Open-source Evaluation

Liu et al. [112] collected changes that fixed FindBugs violations in 730 projects by mining
291,615 commits. They devised an approach that uses convolutional neural networks to
learn from these fixes. Their evaluation included submitting pull requests to open-source
projects as well as checking whether the approach could fix bugs in Defects4J. The authors
submitted 116 patches to open-source projects; 69 were accepted. The authors evaluated
500 of the generated fixes (at most 10 unfixed violations for 50 categories) in terms of
correctness. A fix is correct if it compiles, passes all tests, and removes the FindBugs warning.
Moreover, the authors manually checked the fix to confirm that semantics is preserved. They
found that 25.4% of violations were fixed by the top-1 suggestion and 40.6% were fixed by
the top-10 suggestions.

Repairnator [143] is a program repair bot that monitors continuous integration builds
of GitHub Java projects. When it finds a failing build, it attempts to generate a patch using
several integrated APR tools. At the time of publication it used Nopol [200], Astor [131],
and NPEFix [55]. In all, it could generate 12 patches (5 accepted as pull requests) for 6,173
build failures.

Sorald [63], like SpongeBugs (Chapter 3), is an approach to fix Java violations detected
by SonarQube. It can fix 10 rules of type “bug”, as classified by SonarQube. Differently from
our approach, SpongeBugs, it uses SonarQube’s output to pinpoint a fix location. Moreover,
Sorald is integrated into SoraldBot, a bot that monitors changes on GitHub repositories and
can generate pull request with fixes. The authors submitted 29 pull requests (17 accepted)
to 21 projects.

Styler [120] is another learning approach that mines fixes by traversing commits. How-
ever, Styler’s goal is to fix only violations of Checkstyle,{11} a tool that enforces formatting
standards for Java. In its evaluation, Styler repaired 41% of almost 27K Checkstyle viola-
tions from 104 GitHub projects. It could fix 24 different out of 25 types of rules. The authors
analyzed a sample of the 59% violations that were not fixed and found that the generated
fixes could introduce new violations or even render the file not parsable.

TADAF [11] is a prototype that aims to detect, fix, and verify TensorFlow (Python) API
calls. It statically analyzes Python programs to identify 11 common API misuses patterns
extracted from StackOverflow. TADAF generates fixes based on templates for each rule it
detects. The authors evaluated TADAF on 5 GitHub projects where it fixed 7 misuses.

2.2.4 Summing Up

When evaluated against a benchmark of bugs, the typical patch of a Java APR technique
breaks more functionality than it repairs [144]. As of now, most Java APR techniques are

2.3 Static Analysis Tools 17

not that practical, but they may very well be in the future, given we see advances in the
literature. As stated from from Marginean et al. [130]: “Automated oracles, and testing
and verification will hopefully advance in the years to come, thereby widening the remit of
automated repair.”.

More practical APR approaches, deployed in industry or evaluated on open-source projects,
do not rely on the traditional fault localization approach (i.e., a failing test to pin-point a
bug’s location); instead, they rely on static analyzers to detect and locate bugs. For this rea-
son, to reach our goal of practicality, we focus on fixing issues detected by static analyzers.

2.3 Static Analysis Tools

Static analysis tools (SATs) are widely used by open-source and commercial software projects
to detect possible sources of defects as early as possible in the development process [129];
some organizations even have strict policies requiring the code not to go above a threshold
of warnings before being released [125]. SATs work by raising warnings when a piece of
code violates a given rule. A rule specifies correct behavior, best practices, or stylistic stan-
dards; while rule violations correspond to bugs, deviations from best practices, or breaking
formatting standards. Since SATs work statically on the source or bytecode, they can scale
to large projects without requiring any form of tests [142].

2.3.1 Static Analysis Warnings

SATs like SonarQube [176] offer a range of rules that users may choose for checking. Each
rule corresponds to a pattern whose violations the SATs can identify. For example, Sonar-
Qube’s rule 11863 requires that “Methods should not be empty”; whenever SonarQube finds
a method with an empty body, it will report a violation of rule 11863. A SAT’s rule violation
report is also called a warning (or an issue); therefore, each warning corresponds to the
violation of a specific rule at a certain location in the source code. Fixing a warning means
modifying the source code so that the SAT no longer triggers that warning. For example, a
fix for a violation of rule 1186 consists of adding some executable code or some comments
to fill the empty method body.

SATs notoriously report spurious warnings, usually in the form of false positives—warnings
that do not represent an actual mistake. It is common to find thousands of warnings reported
when a static analysis tool runs for the first time for a project [89]. Unsurprisingly, we have
found that developers tend to fix at most 10% of the reported warnings [125]. Despite the
low warning fix rates, developers consider SAT warnings important when measuring code
quality. Therefore, developers frequently complain about the lack of fix suggestions when
using SATs [89].

2.3.2 Static Analysis and Automated Program Repair

Static analysis tools are an attractive target for automatic fix generation, not only due to
the high number of unfixed violations but because they also support verification: a fix is

18 State of the Art

verified if the static analyzer does not report a warning anymore after applying the fix for
that warning [142]. However, this notion of verification is often not enough. A fix can
clear a warning in a way that developers would hardly accept, or, even worse, by deleting
functionality. Generating fixes acceptable by developers is a general challenge for APR [70].

Previous research has explored automatic fix suggestions through static analysis. Pa-
dioleau et al. [105] proposed Coccinelle to support the evolution of large codebases, such
as the Linux kernel. Logozzo et al. [118] fixed simple yet frequently occurring bugs in C#,
such as improper initialization of loop variables. Aftandilian et al. [2] extended Java’s Open-
JDK compiler for error checking by proposing the tool error prone [62]. More recent works
specifically target static analysis tools and their violations in different ways: interactively,
through the exploration of different fixes [13]; and automatically by mining patterns from
programmer-written fixes [16].

SATs can also guide the bug detection of more general bug fixing APR approaches. Three
recent studies [10, 16, 114] leverage the mining of past programmer-written fixes for spe-
cific SAT warning categories; the mined fixes are used as templates to fix violations of the
same warning category. AVATAR [114] recommends code changes based on the output of
SATs. It uses the output of FindBugs to guide its fault localization process and its mining pro-
cess. For its validation step, AVATAR executes the available test suite. AVATAR could fix 34
bugs in the Defects4J benchmark. Getafix [10] mines its fix patterns by exploring commits
with messages mentioning SATs violations. Differently than AVATAR, Getafix uses SATs in
its fault localization and validation steps. For fault localization, Getafix leverages SATs’ de-
tailed reports, which generally contains the exact line of code of a warning. The SAT is also
used for the validation: a fix is valid if it makes the warning disappear. Getafix considers six
categories of warnings (e.g., null dereference, return should not be null) that often require
a change in logic or control flow. The warnings are detected either by Error Prone [62] or
Facebook’s Infer [85]. Getafix was deployed for 3 months on Facebook, where developers
addressed fixes for 250 null dereferences pointed by the approach. PHOENIX [16] is another
approach that considers SATs and developers’ past fixes for warnings. For its mining process,
PHOENIX executed FindBugs on all commits of 517 projects to build a large number of fix
suggestions for 234 warning categories. Given a pair of consecutive commits, PHOENIX con-
siders a change as a fix if a violation from a previous commit disappears in the following one.
Similarly, a fix is valid if FindBugs no longer reports a violation. When evaluated in a set of
~5.4K violations from 5 popular open-source projects, PHOENIX had a recall of 85% and a
precision of 54%. An open question is whether PHOENIX is suitable for being directly used by
developers. Although PHOENIX produced 19 patches that were accepted by the open-source
projects, the paper’s authors carefully selected the patches. Some categories of warnings
were completely discarded as “a large fraction were indicated as false positives”. Its rela-
tively low precision may make developers skeptical of the usability of static code analysis
tools [34, 187].

2.4 Exception Behavior in Java 19

2.3.3 Summing Up

Static analysis tools are widely used in open-source and commercial software. Despite their
several benefits, developers face several difficulties when using them; we highlight two: i)
large number of reported violations; and ii) lack of automated fixes. To address these two
difficulties, we propose to automatically fix Java SATs’ violations that developers already tend
to fix manually. We recall that SATs are also widely used in practical Automated Program
Repair approaches (as seen in Section 2.2) to pinpoint a bug’s location. Therefore, targeting
SATs’ violations can i) help developers on using tools already integrated in their workflows;
and ii) lessen the requirements of an APR approach.

2.4 Exception Behavior in Java

Exceptions are often used to signal faulty or undesired behavior [30]. A program may include
exception handling code, which executes when an exception is raised to try to recover from
the error or at least mitigate it. Java exceptions are a frequent cause of bugs; thus, they
represent an interesting domain with practical implications for software developers.

Researchers have investigated how exception handling is done in practice both by mining
codebases [7, 48, 86, 97, 98, 149, 173] and by looking at programmers’ habits and guide-
lines [79, 137]. This line of research has revealed that exception-handling code is often
complex [170] and among the most poorly understood and scarcely documented parts of a
system [58]. Thus, it is not surprising that exceptions are commonly implicated in bugs in
a variety of software including Java libraries [151, 196, 205, 206, 207], Android apps [64],
and cloud systems [32].

2.4.1 Testing and Debugging

Given that exception handling is often associated with bugs, the literature has investigated
how developers test and debug exception bugs.

Researchers have studied the testing practices of developers [50], the characteristics of
the tests they write [6, 185], and how they relate to the bugs that are commonly found [188].
Considering technological contributions, a lot of effort has been devoted to bringing more
automation to testing. Frameworks such as the popular JUnit [90] and TestNG [181] au-
tomate test-case execution by providing syntactic means of defining test inputs and the ex-
pected outputs. Other tools can automate the generation of test inputs [67, 156] as well as
of oracles—for example in the form of assertions [60, 193, 194].

Even though plenty of research studied testing, only little looked at the intersection of
tests and exceptions beyond test-case generation [49, 74, 94]; as Ebert et al. [59] put it “per-
haps surprisingly, there is comparatively little work studying how exception handling code
is tested or debugged in practice, with few exceptions [147, 205]”. Dalton et al. [43] an-
alyzed tests and exception tests in 417 Java projects. They surveyed 66 developers about
their perception of exception behavior testing and reported that respondents agree that de-
velopers often neglect exception behavior tests. They also found that 61% of projects with

20 State of the Art

tests also include some exception tests. The Android mobile-programming framework de-
fines and uses numerous framework-specific exception classes. Due to the nature of mobile
apps (which are event-driven and use several external resources), writing proper exception
handling code in Android is not easy [37, 64], which is why test amplification is a promising
technique [205] to validate such exception handling code.

Detecting potential exception bugs is among the numerous exception debugging related
lines of research. MAESTRO [122] automatically detects potential exception triggering code
locations and suggests a relevant StackOverflow post to assist in solving the problem. Its
static detection approach mines StackOverflow exception related questions and answers to
parse code snippets. MAESTRO then builds a control flow graph that abstracts low-level syn-
tactic details to generalize from the concrete code snippets. For instance, it can detect the
same exception bug in both for and while loops. MAESTRO was evaluated only in situa-
tions where it could detect an exception (i.e., no measure of recall); it provided a relevant
StackOverflow post for 71% of 78 cases. DREX [108] applies deep learning to identify run-
time exceptions that a method might throw. It statically builds a graph-based representation
to capture code syntax and semantics and “an attention-based graph neural network that
learns fine-grained statement embedding based on weighed syntactic and semantics infor-
mation”. DREX learned from methods that contain a try/catch from thousands of GitHub
projects; code inside a try block is considered as a potential exception triggering statement.
In their manual evaluation of 50 methods with uncaught exceptions, DREX’s authors could
successfully write tests to trigger 20 cases (i.e., 40% precision). The authors highlighted
that none of the detected unchecked exceptions were detected by static analyzers such as
SpotBugs and PMD. Both MAESTRO and DREX use JavaParser [87], a source code parser that
builds abstract syntax trees with advanced capabilities, such as resolving references to class
and methods. JavaParser enables tools to work on a diverse set of projects as it does not
require building or compiling projects. Fully automatically compiling a broad and general
set of Java projects is considered an unfeasible task [80]. CATCHER combines static excep-
tion propagation analysis with automatic test case generation to detect potential exception
throwing code locations. It uses SOOT [189] to identify method calls that propagate runtime
exceptions that are effectively uncaught (i.e., not handled by a try/catch). These method
calls are used for generating tests by restricting the search space of EVOSUITE [67]. CATCHER

was able to generate 77 tests for 21 Java Projects that EVOSUITE could not generate by itself.

2.4.2 Precondition Inference

Automatically inferring preconditions and other specification elements from implementa-
tions is a long-standing problem in computer science, which has been tackled with a variety
of different approaches. One key motivation is that most developers are reluctant to explic-
itly express preconditions as assertions or other forms of documentation [163].

Historically, the first approaches used static analysis and thus were typically sound (the
inferred specification is guaranteed to be correct, that is, 100% precision) but incomplete
(not all specifications can be inferred, that is low recall), and may not apply to all features
of a realistic programming language [39, 40, 41, 117, 172]. Daikon [60] was the first,

2.4 Exception Behavior in Java 21

widely successful approach that used dynamic analysis, which offers a different trade-off: it
is unsound (the “inferred” specifications are only “likely” to be correct) but it is applicable to
any program that can be executed. Daikon produces these assertions by observing properties
that hold during executions of the system [163].

Dietrich et al. [52] looked at how Java developers implement lightweight precondition
checking by analyzing 176 projects hosted on Maven central. The authors do a thorough
job to define different strategies that developer use to check and enforce preconditions. The
main strategies include: i) Conditional Runtime Exceptions (CRE) which includes exceptions
like IllegalArgumentException, NullPointerException, and IllegalStateException;
ii) the use of APIs (e.g., Apache Commons Validate, Guava Preconditions); iii) assertions
(i.e., assert); iv) the use of annotations (e.g., @Nullable and @NotNull). The first three
are runtime strategies, while annotations are checked during compile-time. The authors
found that 160 (91%) of the projects use some kind of precondition checking, when looking
at the latest versions of the analyzed projects. API usage was surprisingly low (at most 15%),
according to the authors. CRE was the most used strategy; used by 155 (97%) of the 160
projects. The OpenJDK project was the project that employed CRE the most. The authors
conclude that precondition checking may be explained by the high level reuse of library code
in open-source programs. “Modern libraries have to provide defensive API surfaces to deal
with unknown clients”. Thus, by throwing exceptions such as IllegalArgumentException,
a library shifts the responsibility of complying to a precondition to the client. Dietrich et al.
lists several practical advantages to this strategy, including clear debugging (i.e., exception
in the stack trace) and less workload for the libraries maintainers.

In general, inference techniques usually analyze a) client code; b) API documentation;
c) API code [207]. Several approaches infer preconditions from the client code by analyz-
ing code that invokes a given API [151, 167, 168, 174, 182, 192, 203]. The rationale is
that patterns used by many clients of the same API are likely to indicate suitable ways of
using that API’s methods. More recently, approaches based on natural language processing
(NLP) have gained traction [20, 157, 179, 191, 191, 208]. NLP can analyze artifacts other
than program code (e.g., comments and other documentation); on the other hand, machine
learning is usually based on statistical models, and hence it cannot guarantee correctness and
may be subject to overfitting [84, 162]. The work on Toradocu [75] and its later extension
Jdoctor [20] is a relevant representative of the capabilities of natural language processing
techniques to extract (exception) preconditions of Java methods. Toradocu/Jdoctor’s pre-
conditions are Java Boolean expressions; thus, they can be directly used to generate test
oracles or other kinds of executable specification. In its experimental evaluation on widely
used Java libraries, Jdoctor achieved a recall of 83% and a precision of 92%.

Techniques that work on the API code target the implementation of classes and their
methods [207]. Some approaches have explored Java exception preconditions. Buse and
Weimer’s work [24] targets the documentation of exception behavior by instrumenting the
bytecode of a Java application. Their approach outputs exception preconditions that could
often improve or complement human-written documentation. However, their exception pre-
conditions are not guaranteed to be correct, nor were they evaluated quantitatively in pre-
cision and recall. SnuggleBug [29] infers preconditions that characterize the reachability

22 State of the Art

of a goal state from an entry location. It works on bytecode to analyze general precondi-
tions, including exception preconditions (i.e., having a goal of a null dereference expression).
SnuggleBug can handle method calls and can scale to real-world Java projects. Its evalua-
tion was done exclusively on exceptions thrown by the JVM. PaRu [207] is an automated
technique that analyzes source code and Javadoc documentation to link method parameters
to exception behavior. Its goal is to “identify as many links as possible”, so PaRu does not
interpret any rules nor infer preconditions. PaRu outputs a mapping between parameters
and throw statements that depend on them. Drone [210] compares the exception behavior
of source code to that described in Javadoc in order to find inconsistencies. It analyzes a
program’s control flow statically and uses constraint solving to find inconsistencies between
the code and documentation. Drone is primarily designed to run on projects with some doc-
umentation, in order to detect inconsistencies and omissions.

The idea of using techniques to first extract preconditions from libraries, and then to
analyze client code of these libraries has not been systematically explored. Zeng et al.’s recent
work [201] experiments with the idea of combining the results of library and client analysis.
Their work is not specific to exception behavior but targets different kinds of API misuses
and information sources (including Javadoc natural language documentation, call graphs,
method names, and annotations); thus, they can potentially report a broader variety of API
misuses, but with weaker guarantees of precision compared to our experiments. In addition,
there is a natural trade off between breadth of detected misuses and how easily addressable
they are; our focus on exception preconditions can lead to actionable (and possibly even
automatic) code improvement suggestions.

2.4.3 Repairing Exception Behavior

Researchers have explored strategies for mitigating or avoiding errors from exceptions, both
dynamically and statically. Fixes at runtime on the deployed application—often related to
the concept of software healing [70]—aim at assuring program availability in the case of
failures [70]. Runtime repairs techniques targeting exceptions generally involve manually
writing patches first and then dynamically applying them when a crash occurs [25, 28, 31].
An approach targeting Android apps [9], can automatically avoid crashes by dynamically
disabling crash inducing functionalities.

APR tools that focus on exceptions localize potential faulty statements statically [51, 54],
by analyzing and modifying test executions [38], or by relying on failing tests [55, 99, 119].
Most tools [54, 55, 99] target Java null pointer exceptions or other exceptions commonly
thrown by the Java virtual machine (e.g., index out of bounds and class cast). Their fixes
include surrounding the offending code with an if statement that checks whether a reference
is null and either skips the exception-throwing statement or provides alternative/default
values for the null object. CLOTHO [51] focuses on exceptions caused by improper string
manipulation; it statically detects vulnerable statements and surrounds them with try/catch
blocks where the catch block aims at preserving the original code intent. A more general
approach [38] aims at increasing a program’s resilience and avoiding crashing when an
uncaught exception occurs. It works by modifying the exception handling code exercised by

2.4 Exception Behavior in Java 23

tests to add generic throw statements at the beginning of a try block. If the newly thrown
exception fails the tests, the catch clause is modified to capture a more generic exception.
While this approach may prevent a program from crashing, using catch clauses that capture
generic exception types is usually considered an anti-pattern [137, 173].

In the last couple of years, researchers proposed APR approaches focusing on excep-
tions with novel contributions to the fault localization and validation steps. EXCEPT [73]
is a technique that enhances fault localization by focusing on the semantics of exceptions
rather than on the correlation between executed statements and failed tests. It returns a
ranked list of repair targets by analyzing the stack trace of an exception thrown by a failing
test. A stack trace is the list of methods in the call stack up to the moment an exception is
thrown.{12} EXCEPT’s key insight is to differentiate the ranking of likely fault locations based
on the type of 4 frequently thrown exceptions. It analyzes different expressions and loca-
tions depending on the exception. In its evaluation of exception bugs in Defects4J, EXCEPT

outperformed Ochiai [1], a popular spectrum-based fault localization approach. An other
approach, NPEX [107] fixes NullPointerException thrown implicitly by the JVM without
needing tests. It automatically infers the repair specification of the buggy program to vali-
date its generated patches. NPEX takes a stack trace as input and then uses static symbolic
execution to infer the specification of the method that throws the exception. It could cor-
rectly fix 51% of 119 bugs taking on average ~3 minutes per bug. EXCEPT and NPEX both
work on exception stack traces, which assume that an exception has been thrown in the first
place.

2.4.4 Exception API Misuses

APIs typically throw exceptions to signal incorrect calls (for instance, invalid parameters).
Therefore, API misuses can often be linked to exceptions [196] (an invalid argument like
null) or to missing exception-handling code [109, 206] (omitting a try-catch block). Static
API misuse detectors are often limited with respect to exception behavior [4]; and Automated
Program Repair approaches could benefit from better API-misuse detection capabilities [96].

Static analysis tools such as Infer,{13} Coverity Scan,{14} SpotBugs,{15} and SonarQube all
have rules that check for null dereferences: a null dereference occurs in a piece of code like
s.length() when s is null. To our knowledge, these static analyzers do not generally report
exceptions that may be thrown from calls to external libraries. SonarQube does have rules
that check API misuses of common Java libraries (e.g., JUnit, Spring, and Mockito), as well
as the JDK core APIs (e.g., use an overloaded signature of String.indexOf() when looking
for a single character); however, it lacks rules that look for general exceptions thrown in
external libraries.

2.4.5 Summing Up

Exceptions are frequent cause of bugs in Java applications of several domains. Although they
have been studied from multiple perspectives, the literature shows that static API misuse de-
tectors do not perform well on misuses related to exceptions. Moreover, static analyzers

24 State of the Art

also do not generally provide rules that check for exceptions originated from calls to exter-
nal libraries. Therefore, analyzing exception behavior can help developers on a frequent
occurring problem and yet insufficiently covered by current approaches.

Part II
Repairing Static Analysis

Warnings

3
Automatically Generating Fix Suggestions in
Response to Static Code Analysis Warnings

Static code analysis tools such as FindBugs and SonarQube are widely used on open-source
and industrial projects to detect a variety of issues that may negatively affect the quality
of software. Despite these tools’ popularity and high level of automation, several empir-
ical studies report that developers normally fix only a small fraction (typically, less than
10% [125]) of the reported issues—so-called “warnings”. If these analysis tools could also
automatically provide suggestions on how to fix the issues that trigger some of the warnings,
their feedback would become more actionable and more directly useful to developers.

We investigate whether it is feasible to automatically generate fix suggestions for com-
mon warnings issued by static code analysis tools, and to what extent developers are willing
to accept such suggestions into the codebases they’re maintaining. To this end, we imple-
mented a Java program transformation technique, called SpongeBugs, that fixes 11 distinct
rules checked by two well-known static code analysis tools (SonarQube and SpotBugs). Fix
suggestions are generated automatically based on templates, which are instantiated in a
way that removes the source of the warnings; templates for some rules are even capable of
producing multi-line patches. We submitted 38 pull requests, including 946 fixes generated
automatically by our technique for various open-source Java projects, including the Eclipse
UI—a core project of the Eclipse IDE—and both SonarQube and SpotBugs tools. Project
maintainers accepted 87% of our fix suggestions (97% of them without any modifications).

Structure of the Chapter

• Section 3.1 provides motivation for this chapter.

• Section 3.2 describes SpongeBugs’ approach and its implementation.

• Section 3.3 describes the experimental design of SpongeBugs’ evaluation.

• Section 3.4 discusses our results and findings.

• Section 3.5 presents the threats that affect the validity of our work.

27

28 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

• Section 3.6 draws our conclusions on SpongeBugs.

3.1 Introduction

Static code analysis tools (SATs) are becoming increasingly popular as a way of detecting
possible sources of defects earlier in the development process [77]. By working statically
on the source or byte code of a project, these tools are applicable to large code bases [89,
114], where they quickly search for patterns that may indicate problems—bugs, questionable
design choices, or failures to follow stylistic conventions [13, 186]—and report them to
users. There is evidence [17] that using these tools can help developers monitor and improve
software code quality; indeed, static code analysis tools are widely used for both commercial
and open-source software development [77, 114, 125]. Some projects’ development rules
even require that code has to clear the checks of a certain SAT before it can be released [8,
17, 125].

At the same time, some features of SATs limit their wider applicability in practice. One
key problem is that SATs are necessarily imprecise in checking for rule violations; in other
words, they report warnings that may or may not correspond to an actual mistake. As a
result, the first time a static analysis tool is run on a project, it is likely to report thousands of
warnings [77, 89], which saturates the developers’ capability of sifting through them to select
those that are more relevant and should be fixed [125]. Another related issue with using
SATs in practice is that understanding the problem highlighted by a warning and coming up
with a suitable fix is often nontrivial [89, 125].

Our research aims at improving the practical usability of SATs by automatically provid-
ing fix suggestions: modifications to the source code that make it compliant with the rules
checked by the analysis tools. We developed an approach, called SpongeBugs, whose cur-
rent implementation works on Java code. SpongeBugs detects violations of 11 different
rules checked by SonarQube and SpotBugs (successor to FindBugs [77])—two well-known
static code analysis tools, routinely used by very many software companies and consortia,
including large ones such as the Apache Software Foundation and the Eclipse Foundation.
The rules checked by SpongeBugs are among the most widely used in these two tools, and
cover different kinds of code issues (ranging from performance, to correct behavior, style,
and other aspects). For each violation it detects, SpongeBugs automatically suggests and
presents a fix to the user.

By construction, the fixes SpongeBugs suggests remove the origin of a rule’s violation,
but the maintainers still have to decide—based on their overall knowledge of the project—
whether to accept and merge each suggestion. To assess whether developers are indeed
willing to accept SpongeBugs’s suggestions, we present the result of an empirical evaluation
where we applied it to 12 open-source Java projects, and submitted 946 fix suggestions as
pull requests to the projects. At the time of writing, project maintainers accepted 825 (87%)
fix suggestions—97% of them without any modifications. This high acceptance rate suggests
that SpongeBugs often generates patches of high quality, which developers find adequate and
useful.

The empirical evaluation also indicates that SpongeBugs is applicable with good perfor-

3.2 SpongeBugs: Approach and Implementation 29

mance to large code bases. SpongeBugs is also accurate, as it rarely generates false positives
(spurious rule violations). We actually found several cases where SpongeBugs correctly de-
tected cases of rule violations that were missed by SonarQube.

To further demonstrate SpongeBugs’s versatility, Section 3.4 also discusses how Sponge-
Bugs complements program repair tools (e.g., AVATAR [114]) and how it performs on soft-
ware whose main contributors are non-professionals (i.e., students).

With few exceptions—which we discuss throughout our evaluation to inform further
progress in this line of work—SpongeBugs worked as intended by providing sound, easy to
apply suggestions to fix static rule violations.

SpongeBugs’ approach is characterized by the following features: i) it targets static rules
that correspond to frequent mistakes that are often fixable syntactically; ii) it builds fix sug-
gestions that remove the source of warning by construction; iii) it scales to large code bases
because it is based on lightweight program transformation techniques. Despite the focus on
conceptually simple rule violations, SpongeBugs can generate nontrivial patches, including
some that modify multiple hunks of code at once. In summary, SpongeBugs’s focus privi-
leges generating a large number of practically useful fixes over being as broadly applicable
as possible.

3.2 SpongeBugs: Approach and Implementation

SpongeBugs provides fix suggestions for violations of selected rules that are checked by
SonarQube and SpotBugs. Section 3.2.1 discusses how we selected the rules to check and
suggest fixes for. SpongeBugs works by means of source-to-source transformations.

3.2.1 Rule Selection

One key design decision for SpongeBugs is which static code analysis rules it should target.
Crucially, SATs are prone to generating a high number of false positives [89]. To avoid
creating fixes to spurious warnings, we base our design on the assumption that rules whose
violations are frequently fixed by developers are more likely to correspond to real issues of
practical relevance [112, 125].

We collected and analyzed the publicly available datasets from three previous studies
that explored developer behavior in response to output from SonarQube [53, 125] and Find-
Bugs [112]. Based on this data, we initially selected the top 50% most frequently fixed rules,
corresponding to 156 rules, extended with another 10 rules whose usage was not studied in
the literature but appear to be widely applicable.

Then, we went sequentially through each rule, starting from the most frequently fixed
ones, and manually selected those that are more amenable to automatic fix generation. The
main criterion to select a rule is that it should be possible to define a syntactic fix tem-
plate that is guaranteed to remove the source of warning without obviously changing the
behavior. This led to discarding all rules that are not modular, that is, that require changes
that affect clients in any files. An example is the rule Method may return null, but its return
type is @Nonnull.{16} Although conceptually simple, the fix for a violation of this rule entails

30 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

a change in a method’s signature that weakens the guarantees on its return type. This is
impractical, since we would need to identify and check every call of this method, and po-
tentially introduces a breaking change [22]. We also discarded rules when automatically
generating a syntactic fix would be cumbersome or would require additional design deci-
sions. An example is the rule Code should not contain a hard coded reference to an absolute
pathname, whose recommended solution involves introducing an environment variable. To
provide an automated fix for this violation, our tool would need an input from developers,
since pathnames are context specific; it would also need access to the application’s execution
environment, which is clearly beyond the scope of the source code under analysis.

We selected the top rules (in order of how often developers fix the corresponding warn-
ings) that satisfy these feasibility criteria, leading to the 11 rules listed in Table 3.1. Note
that SonarQube and SpotBugs rules largely overlap, but the same rule may be expressed in
slightly different terms in either tool. Since SonarQube includes all 11 rules we selected,
whereas SpotBug only includes 7 of them, we use SonarQube rule identifiers.{17}

Consistently with SonarQube’s classification of rules, we assign an identifier to each rule
according to whether it represents a bug (B1 and B2) or a code smell (C1–C9). While the
classification is fuzzy and of limited practical usefulness, note that the most of our rules are
code smells in accordance with the design decisions behind SpongeBugs.

Table 3.1. The 11 static code analysis rules that SpongeBugs can provide fix suggestions for. The rule
descriptions are based on SonarQube’s, which classifies rules in (B)ugs and (C)ode smells.

ID SONARQUBE ID RULE DESCRIPTION

B1 S4973 Strings and boxed types should be compared using equals()

B2 S2111 BigDecimal(double) should not be used

C1 S1192 String literals should not be duplicated

C2 S3027 String functions use should be optimized for single characters

C3 S1643 Strings should not be concatenated using + in a loop

C4 S2130 Parsing should be used to convert strings to primitive types

C5 S1132 Strings literals should be placed on the left-hand side
when checking for equality

C6 S2129 Constructors should not be used to instantiate String,
BigInteger, BigDecimal, and primitive wrapper classes

C7 S2864 entrySet() should be iterated when both key and value are
are needed

C8 S1155 Collection.isEmpty() should be used to test for emptiness

C9 S1596 Collections.EMPTY_LIST, EMPTY_MAP, and EMPTY_SET
should not be used

Rules C1 and C5 were selected indirectly on top of the feasibility criteria discussed above
(which were used directly to select the other 9 rules). We selected rule C1 because it features
very frequently among the open issues of many projects; its fixes are somewhat challenging
since they involve multiple lines and the insertion of a constant. We selected rule C5 because
it can be fixed in conjunction with fixes to rule B1 (see Listing 3.1), making the code shorter

3.2 SpongeBugs: Approach and Implementation 31

while also avoiding NullPointerException from being thrown.

- if (render != null && render != "")
+ if (!"".equals(render))

Listing 3.1. Fixes for rules B1 (Strings and boxed types should be compared using equals()) and C5
(Strings literals should be placed on the left-hand side when checking for equality) applied in conjunction.

3.2.2 How SpongeBugs Works

SpongeBugs looks for rule violations and builds fix suggestions in three steps:

1. Find textual patterns that might represent a rule violation.

2. For every match identified in step 1, perform a full search in the AST looking for rule
violations.

3. For every match confirmed in step 2, instantiate the rule’s fix templates—producing
the actual fix for the rule violation.

We implemented SpongeBugs using Rascal [103], a domain-specific language for source
code analysis and manipulation. Rascal facilitates several common meta-programming tasks,
including a first-class visitor language constructor, advanced pattern matching based on con-
crete syntax, and defining templates for code generation. We used the latest Rascal’s Java
grammar [45], which targets Java 8, thus our evaluation is limited to Java projects that can
be built using this version of the language.

We illustrate how SpongeBugs’s three steps work for rule C2 (String functions use should
be optimized for single characters). Step 1 performs a fast, but potentially imprecise, search
that is based on some textual necessary conditions for a rule to be triggered. For rule C2,
step 1 looks for files that have a method call to either lastIndexOf() or indexOf()–as
shown in Listing 3.2.

bool shouldContinueWithASTAnalysis(loc fileLoc) {
javaFileContent = readFile(fileLoc);
return findFirst(javaFileContent, ".lastIndexOf(\"") != -1 ||

findFirst(javaFileContent, ".indexOf(\"") != -1;
}

Listing 3.2. Implementation of step 1 for rule C2: find textual patterns that might represent a violation
of rule C2.

Step 1 may report false positives: for rule C2, the call to lastIndexOf() or indexOf()
may not actually involve an instance of a String, or the argument of the function might not
be a single character. Step 2 is more precise, but also more computationally expensive, as it
performs a full AST matching; therefore, it is only applied after step 1 identifies code that
has a high likelihood of being rule violations.

In our example of rule C2, step 2 checks that the target of the possibly offending call to
indexOf() is indeed of type String and the argument is a single character—as shown in
Listing 3.3.

32 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

case (MethodInvocation)
‘<Primary varName>.<TypeArguments? ts>indexOf(<ArgumentList? args>)‘: {
if (isVarAString(mdl, varName) && isSingleArgOfInterest(args)) {

Listing 3.3. Partial implementation of step 2 for rule C2: full AST search for rule violations.

Whenever step 2 returns a positive match, step 3 executes and finally generate a patch to
fix the rule violation. Step 3’s generation is entirely based on code-transformation templates
that modify the AST matched in step 2 as appropriate according to the rule’s semantics. For
rule C2, step 3’s template is straightforward: replace the single character String (double
quotes) with a character (single quote)—its implementation is in Listing 3.4. (Steps 2 and
3 for rule C2 also handle other patterns not shown in this example for brevity.)

argAsChar = parseSingleCharStringToCharAsArgumentList(argsStr);
insert (MethodInvocation) ‘<Primary varName>.<TypeArguments? ts>indexOf(<ArgumentList

,→ argAsChar>)‘;

Listing 3.4. Implementation of step 3 for rule C2: instantiate the fix templates corresponding to the
violated rule.

Note that step 1 is susceptible to differences in layout (e.g., a newline character between
a method call and the first argument). In contrast, step 2 is not affected by layout difference
due to Rascal’s implementation.

3.3 Empirical Evaluation of SpongeBugs: Experimental Design

The general goal of SpongeBugs’s experimental evaluation is to investigate the use of tech-
niques that suggest fixes to warnings generated by static code analysis tools. Section 3.3.1
presents the research questions we answer in this empirical study, which targets:

• 15 open-source projects selected using the criteria we present in Section 3.3.2;

• 5 student projects developed as part of software engineering courses;

• Defects4J: a curated collection of faulty Java programs, widely used to evaluate auto-
mated program repair tools.

3.3.1 Research Questions

The empirical evaluation of SpongeBugs, whose results are described in Section 3.4, ad-
dresses the following research questions, which are based on the original motivation behind
this work: automatically providing fix suggestions that helps to improve the practical usabil-
ity of SATs.

RQ1. How widely applicable is SpongeBugs?
The first research question looks into how many rule violations SpongeBugs can detect
and suggest a fix for. We also analyze cases in which the SpongeBugs’s detection of
rule violations are not accurate.

3.3 Empirical Evaluation of SpongeBugs: Experimental Design 33

RQ2. Does SpongeBugs generate fixes that are acceptable?
The second research question evaluates SpongeBugs’s effectiveness by looking into
how many of its fix suggestions were accepted by project maintainers.

RQ3. How efficient is SpongeBugs?
The third research question evaluates SpongeBugs’s scalability in terms of running
time on large code bases.

RQ4. How does SpongeBugs perform on code written by non-professionals?
The fourth research question runs SpongeBugs on projects developed by students, to
see whether its suggestions have a different impact than those about code written by
professionals.

RQ5. How does SpongeBugs work on code with semantic bugs?
The fifth research question runs SpongeBugs on Defects4J, a curated collection of se-
mantic bugs in real-world Java program; while SpongeBugs is not designed to fix these
kinds of behavioral bugs, it is interesting to see how its heuristics interact with code
that has different kinds of errors.

3.3.2 Selecting Projects for the Evaluation

The evaluation of SpongeBugs uses different Java projects, which we describe in the follow-
ing subsections.

Open-Source Projects

The bulk of the evaluation—addressing RQ1, RQ2, and RQ3—targets large open-source Java
projects, which provide a real-world usage scenario. We selected 15 well-established open-
source Java projects that can be analyzed with SonarQube or SpotBugs. Three projects were
natural choices: the SonarQube and SpotBugs projects are obviously relevant for applying
their own tools; and the Eclipse IDE project is a long-standing Java project one of whose
lead maintainers recently requested{18} help with fixing SonarQube issues. We selected the
other twelve projects, following accepted best practices [93], among those that satisfy all of
the following:

1. the project is registered with SonarCloud (a cloud service that can be used to run
SonarQube on GitHub projects);

2. the project has at least 10 open issues related to violations of at least one of the 11
rules handled by SpongeBugs (see Table 3.1);

3. the project has at least one fixed issue;

4. the project has at least 10 contributors;

5. the project has commit activity in the last three months.

34 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

Table 3.2. The 15 projects we selected for evaluating SpongeBugs. For each project, the table report
its DOMAIN, and data from its GitHub repository: the number of STARS, FORKS, CONTRIBUTORS, and
the size in non-blank non-comment lines of code. Since Eclipse’s GitHub repository is a secondary
mirror of the main repository, the corresponding data may not reflect the project’s latest state.

PROJECT DOMAIN STARS FORKS CONTRIBUTORS LOCa

Eclipse IDE IDE 72 94 218 743 K
SonarQube Tool 3,700 1,045 91 500 K
SpotBugs Tool 1,324 204 80 280 K

atomix Framework 1,650 282 30 550 K
Ant Media Server Server 682 878 16 43 K
cassandra-reaper Tool 278 125 48 88.5 K
database-rider Test 182 45 14 21 K
db-preservation-toolkit Tool 26 8 10 377 K
ddf Framework 95 170 131 2.5 M
DependencyCheck Security 1,697 464 117 182 K
keanu Math 136 31 22 145 K
matrix-android-sdk Framework 170 91 96 61 K
mssql-jdbc Driver 617 231 40 79 K
Payara Server 680 206 66 1.95 M
primefaces Framework 1,043 512 110 310 K
a Non-blank non-comment lines of code calculated from Java source files using cloc ({19})

Student Projects

The effort devoted to improving code quality is likely to be different in projects developed
by students as opposed to large open-source projects such as those that we identified in
Section 3.3.2. SpongeBugs can still be effective on both kinds of projects, but the impact
and scope of its suggestions may differ.

To investigate this aspect, and to demonstrate SpongeBugs’s applicability on heteroge-
neous software, we considered 5 student projects from courses taught at USI (this thesis’s
author’s affiliation)1 in the latest two years. Table 3.3 summarizes the projects’ characteris-
tics. We selected these projects because they were (mainly) written in Java, of substantial
size, and developed by students with experience (that is, non-beginners).

Projects 1 and 2 were developed by undergraduate students of “Software Atelier 4”, a
software engineering project course where groups of about 12 students work to develop an
application following realistic best practices of code development and team coordination.
The projects included a front-end written in JavaScript, which we ignored for the purpose of
evaluating SpongeBugs. The projects required students to use SonarQube to spot potential
problems in their code, and to monitor test coverage.

Projects 3, 4, and 5 were developed by master’s students of “Software Analytics”, a course

1However, the courses were not taught by the author.

3.3 Empirical Evaluation of SpongeBugs: Experimental Design 35

Table 3.3. The student projects we analyzed using SpongeBugs. For each project, the table reports
whether it was developed by Undergraduates or Master’s students (LEVEL); the number of students
working on the project (# STUDENTS); its size in non-blank non-comment lines of code (LOC); and
whether it was already analyzed using SonarQube by the students (SQ?).

PROJECT LEVEL # STUDENTS LOC SQ?

Project 1 U 12 6.8 K Yes
Project 2 U 13 5.2 K Yes
Project 3 M 7 2.5 K Yes
Project 4 M 8 2.4 K Yes
Project 5 M 4 3.6 K No

about using and building tools to monitor software development artifacts and their evolution;
each project was developed by a group of 4–8 students. As for projects 1 and 2, we only
considered the project modules that are written in Java. Project 5 did not require students
to use SonarQube, whereas projects 3 and 4 did.

Curated Collection of Bugs

As we discussed in detail in Section 3.2, SpongeBugs’s targets SAT rules that are syntactic
and modular. This is a deliberate restriction of SpongeBugs’s applicability, but also one that
makes it very effective in its domain.

In contrast, the related work on “automated program repair” typically targets the more
diverse category of semantic (behavioral) bugs, which include any program behavior that
deviates from the intended one. Defects4J has become a popular benchmark to evaluate the
performance of such tools for Java. It is a curated collection of (mostly semantic) bugs found
in open-source Java projects. Each bug in Defects4J comes with some tests that trigger it, as
well with a programmer-written patch that corrects the behavior as intended. Table 3.4 lists
the basic characteristics of the code included in Defects4J (version 1.5.0).

In order to get a better idea of the difference between syntactic and semantic bugs, we
ran SpongeBugs on all 438 Defects4J bugs. Precisely, we ran SpongeBugs on the buggy
version of each program in Defects4J. While we don’t expect SpongeBugs to repair the bugs
(SpongeBugs targets violations of different rules), this experiment can shed light on the
interaction between the syntactic modifications introduced by SpongeBugs and the semantic
behavior of programs (as checked by the tests in Defects4J). In other words, we would like
to ascertain that SpongeBugs’s suggestions generally do not adversely interfere with the
intended program behavior, and they can be applied even when the code is buggy (as it
often is).

3.3.3 Submitting Pull Requests With Fixes Made by SpongeBugs

After running SpongeBugs on the 15 open-source projects listed in Table 3.2, we submitted
the fix suggestions it generated as pull requests (PRs) in the project repositories. Following

36 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

Table 3.4. A summary of the code included in Defects4J, grouped by the Java project it comes from.
For each group, we list the overall size in non-blank non-comment lines of code, the number of
available tests, and the number of bugs triggered by the tests.

PROJECT LOC TESTS BUGS

Chart JFreechart 96 K 2,278 26
Closure Closure Compiler 90 K 8,300 176
Lang Apache Commons-Lang 22 K 2,341 65
Math Apache Commons-Math 84 K 3,619 106
Mockito Mockito Framework 11 K 1,546 38
Time Joda-Time 30 K 4,186 27

TOTAL 330.5 K 22,270 438

suggestions to increase patch acceptability [180], before submitting any pull requests we
approached the maintainers of each project through online channels (GitHub, Slack, main-
tainers’ lists, or email) asking whether pull requests were welcome. (The only exception
was SonarQube itself, since we did not think it was necessary to check that they are OK with
addressing issues raised by their own tool.) When the circumstances allowed so, we were
more specific about the content of our potential PRs. For example, in the case of mssql-jdbc,
we also asked: “We noticed on the Coding Guidelines that new code should pass SonarQube
rules. What about already committed code?”, and mentioned that we found the project’s
dashboard on SonarCloud. However, we never mentioned that our fixes were generated
automatically—but if the maintainers asked us whether a fix was automatic generated, we
openly confirmed it. Interestingly, some developers also asked for a possible IDE integration
of SpongeBugs as a plugin, which may indicate interest. We only submitted pull requests to
the projects that replied with an answer that was not openly negative. The single negative
response pointed out that the project was discontinued. However, fixes were still welcome
to a newer project which involved the same team. We received this reply after we concluded
our pull request submissions, so we did not consider the suggested project.

While the actual code patches in submitted pull requests were generated automatically
by SpongeBugs, we manually added information to present them in a way that was accessi-
ble by human developers—following good practices that facilitate code reviews [165]. We
paid special attention to four aspects: 1. change description, 2. change scope, 3. compos-
ite changes, and 4. nature of the change. To provide a good change description and clarify
the scope of a change, we always mentioned which rule a patch is fixing—also providing a
link to SonarQube’s official textual description of the rule. In a few cases we wrote a more
detailed description to better explain why the fix made sense, and how it followed recom-
mendations issued by the project maintainers. For example, mssql-jdbc recommends to “try
to create small alike changes that are easy to review”; we tried to follow this guideline in
all projects. To keep our changes within a small scope, we separated fixes to violations of
different rules into different pull requests; in case of fixes touching several different modules
or files, we further partitioned them into separate pull requests per module or per file. This

3.3 Empirical Evaluation of SpongeBugs: Experimental Design 37

Table 3.5. Responses to our inquiries about whether it is OK to submit a pull request to each project,
how many pull requests were eventually submitted and approved, and the average time that each
project took to accept or not a pull request.

PULL REQUESTS

PROJECT OK TO SUBMIT? SUBMITTED APPROVED AVG. TIME TO DECISION

Eclipse IDE Positive 9 9 3.44 days
SonarQube – 1 1 1.07 days
SpotBugs Neutral 1 1 2.15 hours
atomix Positive 2 2 12.47 days
Ant Media Server Positive 3 3 18.33 hours
database-rider Positive 4 4 14.66 hours
ddf Positive 3 2 2.33 days
DependencyCheck Neutral 1 1 10.18 hours
keanu Positive 3 0 –
mssql-jdbc Positive 1 1 27.10 days
Payara Positive 6 6 9 hours
primefaces Positive 4 4 16.5 minutes

cassandra-reaper No reply – – –
db-preservation-toolkit No reply – – –
matrix-android-sdk Negative – – –

Total: 38 34 –

was straightforward thanks to the nature of the fix suggestions built by SpongeBugs: fixes
are mostly independent, and one fix never spans multiple classes. Moreover, SpongeBugs
can be easily configured to apply fixes for a single rule at a time.

Overall, the manual effort required to generate the pull requests was low. The most
time-consuming task was related to fixing some projects’ style requirements, which we dis-
cuss in more detail in Section 3.5. However, the general process of contributing to a project
might involve several other tasks, not always source code related. Projects Eclipse IDE, Pa-
yara, and mssql-jdbc required the signature of a Contributor Agreement License (CLA) to
handle intellectual property concerns. For project Payara, we had to physically sign and scan
a printed version of the contract that was validated through e-mail. Project Eclipse IDE uses
the Gerrit Code Review platform,{20} which required the creation of a web account in the
platform, and also extra configurations in the Eclipse IDE itself for submitting contributions.
Moreover, Eclipse IDE might require changes on the source code to modify version numbers
in MANIFEST.MF files.{21} This versioning process is not intuitive and caused the review-
ers and us some nuisances, as in one pull request, a reviewer suggested a version change
that later needed to be reverted.{22} Finally, project Ant-Media-Server requires that all source
code modifications must be done by members of the GitHub organization responsible for the
project. This requirement led to the author of this thesis being added as a member of the
organization.

We consider a pull request approved when reviewers indicate so in the GitHub interface,

38 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

alternatively, for the case of project Eclipse IDE, when the code changes receive positive
review points. Only one pull request was approved but not merged. Since merging depends
on other aspects of the development process that are independent of the correctness of a fix,
we do not distinguish the approved pull request from those that were merged.2

The reviewing process may approve a patch with or without modifications. For each ap-
proved patch generated by SpongeBugs we record whether it was approved with or without
modifications. Table 3.6 shows a detailed overview of all pull requests submitted for each
rule.

Table 3.6. Pull requests submitted for each rule with the total percentage of accepted fixes.

ACCEPTED FIXES %

RULE # PRS # FIXES W/O MOD. WITH MOD. TOTAL

B1 1 1 100% – 100%

B2/C6 2 101 75% 25% 100%

C1 6 289 97% – 97%

C2 8 195 100% – 100%

C3 2 16 88% 12% 100%

C4 3 35 100% – 100%

C5 6 181 50% – 50%

C7 6 65 74% 1% 75%

C8 2 30 83% – 83%

C9 2 33 100% – 100%

Total 38 946 84% 3% 87%

3.4 Empirical Evaluation of SpongeBugs: Results and Discussion

The results of our empirical evaluation of SpongeBugs answer the five research questions
presented in Section 3.3.1. For uniformity, all experiments related to RQ1–3 target the 12
projects whose maintainers were accepting of pull requests fixing static analysis warnings
(top portion of Table 3.5).

3.4.1 RQ1: Applicability

To answer RQ1 (“How widely applicable is SpongeBugs?”), we ran SonarQube on each se-
lected open-source project, counting the warnings triggering violations of any of the 11 rules
SpongeBugs handles. Then, we ran SpongeBugs and applied all its fix suggestions. Finally,
we ran SonarQube again on the fixed project, counting how many warnings had been fixed.
Table 3.7 shows the results of these experiments. Overall, SpongeBugs removes 85% of all
warnings violating the rules we considered in this research.

2The only case is a pull request to Ant Media Server that was approved but violates the project’s constraint
that new code must be covered by tests.

3.4 Empirical Evaluation of SpongeBugs: Results and Discussion 39
Ta

bl
e

3.
7.

Fo
r

ea
ch

pr
oj

ec
t

an
d

ea
ch

ru
le

ch
ec

ke
d

by
So

na
rQ

ub
e,

th
e

ta
bl

e
re

po
rt

s
tw

o
nu

m
be

rs
x/

y:
x

is
th

e
nu

m
be

r
of

w
ar

ni
ng

s
vi

ol
at

in
g

th
at

ru
le

fo
un

d
by

So
na

rQ
ub

e
on

th
e

or
ig

in
al

pr
oj

ec
t;

y
is

th
e

nu
m

be
r

of
w

ar
ni

ng
s

th
at

ha
ve

be
en

fix
ed

af
te

r
ru

nn
in

g
Sp

on
ge

B
ug

s
on

th
e

pr
oj

ec
t

an
d

ap
pl

yi
ng

al
l

it
s

fix
su

gg
es

ti
on

s
fo

r
th

e
ru

le
.

Th
e

tw
o

ri
gh

tm
os

t
co

lu
m

ns
su

m
m

ar
iz

e
th

e
da

ta
pe

r
pr

oj
ec

t
(T

O
TA

L)
,

an
d

re
po

rt
th

e
pe

rc
en

ta
ge

of
w

ar
ni

ng
s

th
at

Sp
on

ge
B

ug
s

su
cc

es
sf

ul
ly

fix
ed

(F
IX

E
D

%
).

Th
e

tw
o

bo
tt

om
ro

w
s

su
m

m
ar

iz
e

th
e

da
ta

pe
r

ru
le

in
th

e
sa

m
e

w
ay

.

P
R

O
JE

C
T

B
1

B
2

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

T
O

TA
L

FI
X

E
D

%

E
cl

ip
se

ID
E

41
/5

13
/1

0
21

4/
19

9
4/

4
3/

2
19
/3

18
9/

17
6

17
/1

1
–

13
8/

94
10

2/
97

74
0/

60
1

81
%

S
on

ar
Q

ub
e

–
–

10
4/

94
–

–
–

7/
7

–
–

–
–

11
1/

10
1

91
%

S
po

tB
ug

s
12
/8

1/
0

28
9/

24
7

2/
1

1/
0

11
/1

14
1/

14
1

–
–

30
/2

6
–

48
6/

42
4

87
%

at
om

ix
1/

1
–

57
/5

7
–

–
–

9/
9

–
–

1/
0

2/
1

70
/6

8
97

%

A
nt

M
ed

ia
S

er
ve

r
–

–
28
/2

8
3/

2
1/

0
2/

1
23
/2

3
3/

0
–

4/
2

4/
4

68
/6

0
88

%

da
ta

ba
se

-r
id

er
–

–
5/

5
5/

5
–

–
2/

2
–

1/
1

1/
1

–
14
/1

4
10

0%

dd
f

1/
0

–
10

4/
98

–
1/

0
–

88
/8

6
–

1/
1

45
/3

7
8/

8
24

7/
23

0
93

%

D
ep

en
de

nc
yC

he
ck

–
–

61
/5

1
10
/9

–
–

3/
3

–
–

4/
2

–
78
/6

5
83

%

ke
an

u
1/

1
–

–
–

–
–

4/
4

–
12
/1

2
5/

5
–

22
/2

2
10

0%

m
ss

ql
-jd

bc
4/

1
–

31
4/

28
2

14
/1

–
7/

1
58
/5

8
2/

0
–

14
/1

4
–

41
3/

35
7

86
%

P
ay

ar
a

39
/3

6
–

1,
41

3/
1,

30
5

21
4/

16
9

61
/1

4
11

4/
10

1,
83

0/
1,

62
7

20
0/

88
50
/4

4
43

8/
30

1
58
/5

0
4,

41
7/

3,
64

4
82

%

pr
im

ef
ac

es
–

–
33

6/
28

6
11
/9

6/
6

3/
3

33
6/

32
9

–
1/

1
1/

0
4/

4
69

8/
63

8
91

%

T
O

TA
L

99
/5

2
14
/1

0
2,

92
5/

2,
65

2
26

3/
20

0
71
/2

2
15

6/
19

2,
69

0/
2,

46
5

22
2/

99
65
/5

9
68

1/
44

8
17

8/
16

4
7,

36
4/

6,
22

4
–

FI
X

E
D

%
53

%
71

%
91

%
76

%
31

%
12

%
92

%
45

%
91

%
71

%
92

%
85

%
–

40 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

These results justify our decision of focusing on a limited number of rules. In particular,
the two rules (C3 and C4) with the lowest percentages of fixing are responsible for approxi-
mately 3% of the triggered violations. In contrast, a small number of rules triggers the vast
majority of violations, and SpongeBugs is extremely effective on these rules.

A widely applicable kind of suggestion are those for violations of rule C1 (String literals
should not be duplicated), shown in Listing 3.5, which SpongeBugs can successfully fix in
91% of the cases in our experiments. Generating automatically these suggestions is quite
challenging. First, fixes to violations of rule C1 change multiple lines of code, and add
a new constant. This requires to automatically come up with a descriptive name for the
constant, based on the content of the string literal. The name must comply with Java’s rules
for identifiers (e.g., it cannot start with a digit). The name must also not clash with other
constant and variable names that are in scope. SpongeBugs’s fix suggestions can also detect
whether there is already another string constant with the same value—reusing that instead
of introducing a duplicate.

public class AccordionPanelRenderer extends CoreRenderer {

+ private static final String FUNCTION_PANEL = "function(panel)";

@@ -130,13 +133,13 @@ public class AccordionPanelRenderer extends CoreRenderer {
if (acco.isDynamic()) {

wb.attr("dynamic", true).attr("cache", acco.isCache());
}

wb.attr("multiple", multiple, false)
- .callback("onTabChange", "function(panel)", acco.getOnTabChange())
- .callback("onTabShow", "function(panel)", acco.getOnTabShow())
- .callback("onTabClose", "function(panel)", acco.getOnTabClose());
+ .callback("onTabChange", FUNCTION_PANEL, acco.getOnTabChange())
+ .callback("onTabShow", FUNCTION_PANEL, acco.getOnTabShow())
+ .callback("onTabClose", FUNCTION_PANEL, acco.getOnTabClose());

Listing 3.5. Fix suggestion for a violation of rule C1 (String literals should not be duplicated) in project
primefaces.

We also highlight that our approach is able to perform distinct transformations in the
same file and statement. Listing 3.6 shows the combination of a fix for rule C1 (String literals
should not be duplicated) applied in conjunction with a fix for rule C5 (Strings literals should
be placed on the left side when checking for equality).

public class DataTableRenderer extends DataRenderer {

+ private static final String BOTTOM = "bottom";

- if (hasPaginator && !paginatorPosition.equalsIgnoreCase("bottom")) {
+ if (hasPaginator && !BOTTOM.equalsIgnoreCase(paginatorPosition)) {

Listing 3.6. Fix suggestion for a violation of rules C1 and C5 in the same file and statement found in
project primefaces.

Another encouraging result is the negligible number of fix suggestions that failed to com-
pile: only two among all those generated by SpongeBugs. We attribute this low number to

3.4 Empirical Evaluation of SpongeBugs: Results and Discussion 41

our approach of refining SpongeBugs’s implementation with the support of a curated and
growing suite of examples to test against. We also note that one of the two fix suggestions
that didn’t compile is likely a false positive (reported by SonarQube). On line 6 of Listing 3.7,
the string literal "format" is replaced by the constant OUTPUT_FORMAT which is only acces-
sible within class CliParser using its qualified name ARGUMENT.OUTPUT_FORMAT. However,
SonarQube’s warning does not have this information, as it just says: “Use already-defined
constant OUTPUT_FORMAT instead of duplicating its value here”.

1 public final class CliParser {
2

3 - final Option outputFormat = Option.builder(ARGUMENT.OUTPUT_FORMAT_SHORT)
4 - .argName("format").hasArg().longOpt(ARGUMENT.OUTPUT_FORMAT)
5 + final Option outputFormat = Option.builder(ARGUMENT.OUTPUT_FORMAT_SHORT)
6 + .argName(OUTPUT_FORMAT).hasArg().longOpt(ARGUMENT.OUTPUT_FORMAT)
7

8 public static class ARGUMENT {
9 public static final String OUTPUT_FORMAT = "format";

10 }
11 }

Listing 3.7. Example of an incorrect fix due to a false positive violation of rule C1. Line 6 references
constant OUTPUT_FORMAT which is not available as an unqualified name.

Detection Accuracy

To better evaluate SpongeBugs’s applicability, we investigate when its analysis produces false
positives and false negatives. A false positive is a rule violation that is erroneously reported;
in these cases, SpongeBugs produces a suggestion that changes something that need not be
changed. A false negative is a rule violation that is not reported; in these cases, SpongeBugs
should produce some suggestion that is instead missing.

From the point of view of usability, false positives are those with the greater potentially
negative impact. Indeed, a high false-positive rate is one of the key reasons that limit the
adoption of SATs [89]: a user flooded with many false positives quickly concludes that the
tool is not reliable because it points to a lot of violations that are incorrect or irrelevant [112].
In contrast, false negatives are a minor problem as long as a tool is still widely applicable and
reports suggestions that help improve the design or other quality attributes of the program.

Since SpongeBugs provides suggestions to enforce rules that are checked by SonarQube,
we use SonarQube’s detected rule violations as ground truth3 to count SpongeBugs’s false
positives and false negatives:

• A suggestion provided by SpongeBugs for which SonarQube reports no rule violation
is a false positive;

• A rule violation reported by SonarQube for which SpongeBugs provides no suggestions
is a false negative.

3Remember that SpongeBugs does not use SonarQube’s output to identify rule violations but performs its
own detection; otherwise this discussion would be moot.

42 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

As we discuss in detail in the following subsections, SpongeBugs generates very few false
positives (a tiny fraction of all violations it detects), and many of these are actually misdetec-
tions by SonarQube. In contrast, SpongeBugs generates a more significant number of false
negatives (19% of all violations SonarQube detects); but these are not so problematic for
applicability since they simply reflect some design decisions that trade off some detection
capabilities in exchange for soundness.

False Positives

Table 3.8 reports SpongeBugs’s false-positive rate in each project and for each rule. Over-
all, only 0.6% of all fix suggestions provided by SpongeBugs do not correspond to a viola-
tion reported by SonarQube. Such a low rate of false positives corroborates the data about
SpongeBugs’s accuracy and hence practical relevance.

To better understand the few cases where SpongeBugs generates false positives, we clas-
sify all of them into categories according to their origin. We found out that the majority
of false positives (23 out of 37 cases) are actually likely not false positives but rather false
negatives of SonarQube’s detection.

Table 3.8. For each project and each rule checked by SonarQube, the table reports the number of false
positives (a fix suggestion provided by SpongeBugs for which SonarQube reported no rule violation).
The bottom rows summarize the TOTAL number of false positives, and what percentage of the overall
violations reported by SonarQube these false positives correspond to; similarly the rightmost column
reports the TOTAL per project.

PROJECT B1 B2 C1 C2 C3 C4 C5 C6 C7 C8 C9 TOTAL

Eclipse IDE 0 0 3 0 0 4 0 0 1 3 1 12

SonarQube 1 0 0 0 0 1 0 0 2 0 0 4

ddf 0 0 6 0 0 0 0 0 0 0 0 6

Payara 0 0 2 0 0 12 0 0 0 1 0 15

TOTAL 1 0 11 0 0 17 0 0 3 4 1 37

FP % 1.9% 0% 0.4% 0% 0% 47.2% 0% 0% 4.8% 0.8% 0.6% 0.6%

True Positives According to SonarLint. SonarLint is a plugin that integrates SonarQube
inside the Eclipse IDE. Somewhat surprisingly, SonarLint disagrees with SonarQube’s analysis
on 4 rule violations that were fixed by SpongeBugs but not reported by SonarLint. It is
possible this disagreement is due to different filtering rules (or warning prioritization rules)
used by SonarLint and SonarQube. In any case, these 4 violations can be considered true
positives (even though we classified them as false positives when using SonarQube’s output
as ground truth).

3.4 Empirical Evaluation of SpongeBugs: Results and Discussion 43

True Positives According to Developers. Out of all fix suggestions built by SpongeBugs that
were accepted as pull requests by developers (see Section 3.3.3), 17 do not correspond to
any rule violation reported by SonarQube. All but one of these fix suggestions correspond
to violations of rule C4 (Parsing should be used to convert strings to primitive types); 4 of
them were accepted by the maintainers of Eclipse IDE and 12 by the maintainers of Payara.
This convincingly indicates that most, if not all, of these cases are true positives (and false
negatives of SonarQube); at the very least, SpongeBugs’s suggestions are considered not
harmful by maintainers of the code.

Listing 3.8 shows an example of SpongeBugs fix suggestion that does not correspond to
a rule violation according to SonarQube. In order to understand why SonarQube failed to
report this as a violation, we looked for other similar violations of rule C4 that were instead
reported by SonarQube as well as fixed by SpongeBugs, such as line 9 in Listing 3.9. It turns
out that if we remove the outer parentheses in subexpression (Double.valueOf(value))

SonarQube will report a violation of rule C4 in Listing 3.8 as well. The sensible conclusion
is that this is a miss in SonarQube’s detection.

public static double asDouble(String value) throws DataFormatException {
try {

- return (Double.valueOf(value)).doubleValue();
+ return Double.parseDouble(value);

} catch (NumberFormatException e) {
throw new DataFormatException(e.getMessage());

}
}

Listing 3.8. Fix suggestion generated by SpongeBugs for a violation of rule C4 not detected by
SonarQube.

1 public int getInt(String key) throws NumberFormatException {
2 String setting = items.get(key);
3 if (setting == null) {
4 // Integer.valueOf(null) will throw a NumberFormatException and
5 // meet our spec, but this message is clearer.
6 throw new NumberFormatException(
7 "There is no setting associated with the key \"" + key +

,→ "\"");//$NON-NLS-1$ //$NON-NLS-2$
8 }
9 return Integer.valueOf(setting).intValue();

10 }

Listing 3.9. Violation of rule C4 detected by both SonarQube and SpongeBugs.

We found several other examples of fragile behavior of SonarQube detecting violations of
rule C4, which betray failures of its analysis algorithm. Like every static analyzer, SonarQube
sometimes limits the cases in which a rule is checked, to improve scalability and precision
of detection in the other cases. SpongeBugs is no different, but it sometimes achieves differ-
ent trade-offs than SonarQube—hence the discrepancies we observed in these experiments.
By and large, however, SpongeBugs and SonarQube’s detection results are consistent and
correct.

44 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

Actual False Positives. Only 17 out of all fix suggestions produced by SpongeBugs are ac-
tual false positives: they correspond to spurious rule violations. In 5 of these cases we could
find a programmer’s annotation that explicitly turns off checking of certain rules; unfortu-
nately, SpongeBugs does not process these annotations, and hence it will obliviously flag
what it considers a violation.

Listing 3.10 shows examples of such annotations that should suppress detection. On
line 1 a generic annotations suppresses checking all rules in the whole class; on lines 4–7 an
annotation turns of two specific rules within a method; on line 15 a special comment turns
off checking a specific rule on the same line where the comment appears.4

1 @SuppressWarnings("all") // prevents detection of all rules within the entire class
2 public class JavaClass {
3

4 @SuppressWarnings({ // suppress detection of two rules within aMethod()
5 "squid:S1192", // S1192 is SonarQube’s identifier for rule C1
6 "squid:S106"
7 })
8 public static void aMethod() {
9 // ...

10 }
11

12 public static void anotherMethod(String s1, String s2) {
13 // the following comment suppresses detection of the rule on the line where

,→ NOSONAR appears
14 if (s1 == s2) { // NOSONAR false-positive: Compare Objects With Equals
15 }
16 }

Listing 3.10. Examples of annotations used to suppress detection in SonarQube. SpongeBugs ignores
them.

We also found two fix suggestions corresponding to a violation of rule C7 (entrySet()
should be iterated when both key and value are needed) in project SonarQube that are spu-
riously reported by SpongeBugs. Listing 3.11 shows the corresponding code, where there
is an important difference between an iteration over keySet() and one over entrySet().
Since a TreeSet is created passing Map prop as keys, the map is directly used as underlying
implementation of the set of keys. An enumeration over keySet() will then follow the or-
dering defined over keys—alphabetical order in this case; in contrast, an enumeration over
entrySet() may list the elements in a different order (the one in which they are stored in
the map). Since method writeGlobalSettings produces user output, alphabetical order is
expected and should not be changed.

1 private void writeGlobalSettings(BufferedWriter fileWriter) throws IOException {
2 fileWriter.append("Global server settings:\n");
3 Map<String, String> props = globalServerSettings.properties();
4 for (String prop : new TreeSet<>(props.keySet())) {
5 dumpPropIfNotSensitive(fileWriter, prop, props.get(prop));
6 }

4Curiously, SonarQube includes a rule (S1291), which checks that NOSONAR annotations are not used. This
rule is, however, disabled by default.

3.4 Empirical Evaluation of SpongeBugs: Results and Discussion 45

7 }

Listing 3.11. A spurious violation of rule C7 on line 4 reported by SpongeBugs.

The remaining 11 cases of false positives correspond to spurious violations of rule C1
(String literals should not be duplicated) where string literals occur inside Java annotations.
Listing 3.10 shows an example of spurious fix generated by SpongeBugs. The fix does not
alter program behavior in any way; it is just not idiomatic since it mixes program code (a
static field) and annotations (which should only be used by the compiler).

1 public class JCDIServiceIMPL {
2 + private static final String UNCHECKED = "unchecked";
3

4 - @SuppressWarnings("unchecked")
5 + @SuppressWarnings(UNCHECKED)
6 @Override
7 public <T> void injectEJBInstance(JCDIInjectionContext<T> injectionCtx) {
8 JCDIInjectionContextImpl<T> injectionCtxImpl = (JCDIInjectionContextImpl<T>)

,→ injectionCtx;
9 // ...

10 }
11 }

Listing 3.12. Fix suggestion generated by SpongeBugs for a spurious violation of rule C1 on line 4.
SonarQube does not report this as a violation.

False Negatives

Table 3.9 reports SpongeBugs’s false-negative rate in each project and for each rule. Overall,
15% of rule violations reported by SonarQube were not detected—and hence not fixed—
by SpongeBugs. As we mentioned above, this significant false negative rate is not much
detrimental to SpongeBugs’s practical applicability, since the tool still provides thousands of
useful, accurate suggestions for rule violations. As we discuss in Section 3.2, we designed
SpongeBugs to make sure that, when it detects a rule violation, it has all the necessary in-
formation to produce a suitable fix suggestion. Therefore, part of the false negative are a
consequence of design decisions to trade off some detection capability for additional preci-
sion; others are due to other limitations of SpongeBugs’s implementation.

The percentage of false negatives changes considerably with different rules. In order to
better understand SpongeBugs limitations in practice, the rest of this section presents several
examples of false negatives—with at least one example per rule.

Local Analysis. SpongeBugs’s analysis is strictly local to each method: if a method m calls
another method n, m’s analysis has no information about n’s effects and results other than its
local calling context. This limitation may cause false negatives in all rules.

Listing 3.13 shows a violation of rule C4 (Parsing should be used to convert strings to
primitive types) that is detected by SonarQube but is not fixed by SpongeBugs. The latter’s
analysis of line 5 is oblivious to the fact that method getStatementTimeout returns a String.

46 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

Table 3.9. For each project and each rule checked by SonarQube, the table reports the number of false
negatives (a rule violation reported by SonarQube for which SpongeBugs provides no suggestions).
The bottom rows summarize the TOTAL number of false negatives, and what percentage of the overall
violations reported by SonarQube these false negatives correspond to; similarly the rightmost column
reports the TOTAL per project.

PROJECT B1 B2 C1 C2 C3 C4 C5 C6 C7 C8 C9 TOTAL

Eclipse IDE 36 3 15 0 1 15 13 6 – 44 5 138

SonarQube – – 10 – – – 0 – – – – 10

SpotBugs 4 1 42 1 0 10 0 – – 4 – 62

atomix 0 – 0 – – – 0 – – 1 1 2

Ant Media Server – – 0 1 1 1 0 3 – 2 0 8

database-rider – – 0 0 – – 0 – 0 0 – 0

ddf 1 – 6 – 0 – 2 – 0 8 0 17

DependencyCheck – – 10 1 – – 0 – – 2 – 13

keanu 0 – – – – – 0 – 0 0 – 0

mssql-jdbc 3 – 32 13 – 7 0 2 – 0 – 57

Payara 3 – 108 45 47 104 203 112 6 137 8 773

primefaces – – 50 2 0 0 7 – 0 1 0 60

TOTAL # 47 4 273 63 49 137 223 123 6 199 14 1,140

OVERALL % 52% 29% 9% 24% 69% 88% 8% 55% 9% 29% 8% 15%

Without this information, SpongeBugs cannot detect that rule C4 is being violated by passing
a string to valueOf instead of parseInt.

1 public String getStatementTimeout() {
2 return spec.getDetail(DataSourceSpec.STATEMENTTIMEOUT);
3 }
4 // ...
5 int statementTimeout = Integer.valueOf(getStatementTimeout());

Listing 3.13. Violation of rule C4 on line 5, which is not detected by SpongeBugs.

It may seem that providing SpongeBugs with the information that is needed to detect vio-
lations such as the one in Listing 3.13 is straightforward: after all, method getStatementTimeout

is defined in the same class as where the violation occurs. In our experiments, however, most
of the false negatives due to local analysis involve a method that is called in one class but is
defined in a different class. Listing 3.14 shows another violation of rule C4 that SpongeBugs
does not detect. In this case, the offending method getSecurityEnabled is called in class
IIOPSSLSocketFactory but is declared more specifically an interface, other than the one
where the violation is present.

3.4 Empirical Evaluation of SpongeBugs: Results and Discussion 47

1 public interface IiopListener {
2 String getSecurityEnabled();
3 }
4

5 public class IIOPSSLSocketFactory {
6 public void aMethod() {
7 for (IiopListener listener : iiopListeners) {
8 boolean securityEnabled = Boolean.valueOf(listener.getSecurityEnabled());
9 }

10 }
11 }

Listing 3.14. Violation of rule C4 on line 8, which is not detected by SpongeBugs.

Extending SpongeBugs’s analysis beyond purely local would require to process multiple
files at once, and to collect more detailed typing information. While such an extension is be-
yond SpongeBugs’s current design—which privileges simplicity and precision over broader
applicability—we may consider it in future work. In order to do it efficiently, we may pre-
process the whole codebase at once [100]; then, each individual analysis could access this
system-wide information as needed in an efficient way. To be truly system-wide, this ap-
proach would also need to track dependencies outside a project’s source code—such as in
calls to pre-compiled or even native libraries.

Rule Restrictions. SpongeBugs analyzes some rules with additional restrictions on their ap-
plicability. Some of these restrictions are deliberate design choices that help make detection
more precise or more efficient; others are limitations of the current implementation.

Take for example to rule C3 (Strings should not be concatenated using + in a loop), which
SpongeBugs checks only when the concatenated string is eventually returned by a method.
Thus, SpongeBugs misses the violation of rule C3 on line 7 in Listing 3.15 because string
containerStyleClass, which is built by concatenation in a loop, is not returned by method
encodeElements.

1 protected void encodeElements(Menu menu, List<MenuElement> elements) {
2 boolean toggleable = menu.isToggleable();
3 for (MenuElement element : elements) {
4 String containerStyleClass = menuItem.getContainerStyleClass();
5

6 if (toggeable) {
7 containerStyleClass = containerStyleClass + " " + Menu.SUBMENU_CHILD_CLASS;
8 }
9 }

10 }

Listing 3.15. Violation of rule C3 on line 7, which is not detected by SpongeBugs.

While it is possible to alleviate this restriction, we found that to fix more cases, not only
the runtime performance would increase, but, more importantly, also the number of false
positives. Thus, we introduced this restriction on rule C3 because it curbs the number of
rule violations that are detected while still covering the most salient cases. Other restrictions
mainly simplify the analysis, helping ensure that a rule violation’s can be detected correctly.

48 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

For example, SpongeBugs only checks rule C8 (Collection.isEmpty() should be used to test
for emptiness) inside regular methods. Thus, it misses the violation in Listing 3.16 because it
appears inside a lambda expression, which makes the analysis of local variables considerably
more difficult.

1 public class LeaderElectorProxy {
2 private final Map<String, Set<LeadershipEventListener<byte[]>>> topicListeners =

,→ Maps.newConcurrentMap();
3

4 public synchronized CompletableFuture<Void> removeListener(String topic,
,→ Listener<btye[] listener>) {

5 if (!topicListeners.isEmpty()) {
6 topicListeners.computeIfPresent(topic, (t, s) -> {
7 s.remove(listener);
8 return s.size() == 0 ? null : s;
9 });

10 }
11 // ...
12 }
13 }

Listing 3.16. Violation of rule C8 on line 8, which is not detected by SpongeBugs.

Another restriction in the application of rule C8 follows from SpongeBugs’s limited in-
formation about how types are related by inheritance. Listing 3.17 shows a violation of
this rule on line 5: CopyOnWriteArrayList implements the List interface, and hence the
conditional on line 5 should be expressed as !Collections.isEmpty(). However, Sponge-
Bugs only knows about the most common implementations of collection classes, and hence
it misses this violation. This restriction also affects the other rules that involve Collection

classes, that is rules C7 and C9.

1 import java.util.concurrent.CopyOnWriteArrayList;
2

3 protected CopyOnWriteArrayList<IPlayItem> items;
4 // ...
5 if (items.size > 0)

Listing 3.17. Violation of rule C8 on line 5, which is not detected by SpongeBugs.

Toolchain Limitations. Finally, a few false negatives follow from limitations of the tools
we used to build SpongeBugs. In particular, Rascal’s Java 8 grammar is not complete, and
hence a few classes such as class AMXConfigImpl in project Payara cannot be parsed. While
implementing SpongeBugs, we overcome some of these limitations by extending the Rascal
grammar5 to cover some of the missing cases.

Running Test Suites

A major concern when providing automatic fixes is whether the fixes preserve program
behavior. A common way to evaluate program correctness is through executing its test

5Our extensions is now available in Rascal’s repository.

3.4 Empirical Evaluation of SpongeBugs: Results and Discussion 49

suite [70, 142]. We report on the execution of test suites in the selected open source projects,
to investigate if SpongeBugs introduces behavior faults.

We were able to run tests on 8 out of the 12 projects we evaluated SpongeBugs on. We
did not run tests for projects database-rider and mssql-jdbc because they require a running
database to execute tests. Despite our best efforts, we could not execute tests for projects
Eclipse IDE and Ant Media Server, thus we also did not run their tests. Interestingly, they
are the only 2 projects that strictly recommend building without running tests.6 Projects
ddf and Payara, which, in our experiments, builds consistently took longer than 20 minutes,
recommend to skip tests only if speed up is desired.

As expected, SpongeBugs fixes mostly does not alter program behavior. Only a single
test case failed when running the tests for the 8 remaining projects, as show in Table 3.10.
The failing test is related to project SonarQube’s false positive described in Listing 3.11.

Table 3.10. Summary of running test suites in all projects. The last column indicates the number of
tests that fail after applying SpongeBugs suggestions.

PROJECT TESTABLE? FAILING TESTS

Eclipse IDE Noa –
SonarQube Yes 1
SpotBugs Yes 0
Ant Media Server Noa –
atomix Yes 0
database-rider Nob –
ddf Yes 0
DependencyCheck Yes 0
keanu Yes 0
mssql-jdbc Nob –
Payara Yes 0
primefaces Yes 0
a Recommends building without executing tests.
b Requires a database.

3.4.2 RQ2: Effectiveness and Acceptability

As discussed in Section Section 3.3.3, we only submitted pull requests after informally con-
tacting project maintainers asking to express their interest in receiving fix suggestions for
warnings reported by SATs. As shown in Table 3.5, project maintainers were often quite wel-
coming of contributions with fixes for SATs violations, with 9 projects giving clearly positive
answers to our informal inquiries. For example an Ant Media Server maintainer replied “Ab-
solutely, you’re welcome to contribute. Please make your pull requests”. A couple of projects
were not as enthusiastic but still available, such as a maintainer of DependencyCheck who

6We collected documentation on the build process for 11 projects. These resources are available in our
repository.

50 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

answered “I’ll be honest that I obviously haven’t spent a lot of time looking at SonarCloud
since it was setup. . . That being said – PRs are always welcome”. Even those that indicated
less interest in pull requests ended up accepting most fix suggestions. This indicates that
projects and maintainers that do use SATs are also inclined to find valuable the fix sugges-
tions in response to their warnings. We received no timely reply from 3 projects, and hence
we did not submit any pull request to them (and we excluded them from the rest of the
evaluation).

In order to answer RQ2 (“Does SpongeBugs generate fixes that are acceptable?”), we
submitted 38 pull requests containing 946 fixes for the 12 projects that responded our ques-
tion on whether fixes were of interest for the project. We did not submit pull requests with
all fix suggestions (more than 5,000) since we did not want to overwhelm the maintain-
ers. Instead, we sampled broadly (randomly in each project) while trying to select a diverse
collection of fixes.

Overall, 34 pull requests were accepted, some after discussion and with some modifica-
tions. Table 3.5 breaks down this data by project. The non-accepted pull requests were: 3 in
project keanu that were ignored; and 1 in project ddf where maintainers argued that the fixes
were mostly stylistic. In terms of fixes, 825 (87%) of all 946 submitted fixes were accepted;
797 (97%) of them were accepted without modifications.

How to turn these measures into a precision measure depends on what we consider a
correct fix: one that removes the source of warnings (precision nearly 100%, as only two fix
suggestions were not working), one that was accepted in a pull request (precision: 87%),
or one what was accepted without modifications (precision: 797/946 = 84%). Similarly,
measures of recall depend on what we consider the total amount of relevant fixes.

An aspect that we did not anticipate is how policies about code coverage of newly added
code may impact whether fix suggestions are accepted. At first we assumed our transfor-
mations would not trigger test coverage differences. While this holds true for single-line
changes, it may not be the case for fixes that introduce a new statement, such as those for
rule C1 (String literals should not be duplicated), rule C3 (Strings should not be concatenated us-
ing + in a loop), and some cases of rule C7 (entrySet() should be iterated when both key and
value are needed). For example, the patch shown in Listing 3.18 was not accepted because
the 2 added lines were not covered by any test. One pull request to Ant Media Server which
included 97 fixes in 20 files was not accepted due to insufficient test coverage of some added
statements.

public class TokenServiceTest {

+ private static final String STREAMID = "streamId";

- token.setStreamId("streamId");
+ token.setStreamId(STREAMID);

Listing 3.18. The lines added by this fix were flagged as not covered by any existing tests.

Sometimes a fix’s context affects whether it is readily accepted. In particular, developers
tend to insist that changes be applied so that the overall stylistic consistency of the whole
codebase is preserved. Let’s see two examples of this.

3.4 Empirical Evaluation of SpongeBugs: Results and Discussion 51

Listing 3.19 fixes three violations of rule C2; a reviewer asked if line 3 should be modified
as well to use a character ’*’ instead of the single-character string "*":

“Do you think that for consistency (and maybe another slight performance en-
hancement) this line should be changed as well?”

1 - if (pattern.indexOf("*") != 0 && pattern.indexOf("?") != 0 && pattern.indexOf(".") !=
,→ 0) {

2 + if (pattern.indexOf(’*’) != 0 && pattern.indexOf(’?’) != 0 && pattern.indexOf(’.’) !=
,→ 0) {

3 pattern = "*" + pattern;
4 }

Listing 3.19. Fix suggestion for a violation of rule C2 that introduces a stylistic inconsistency.

The pull request was accepted after a manual modification. Note that we do not count this
as a modification to one of our fixes, as the modification was in a line of code other than the
one we fixed.

Commenting on the suggested fix in Listing 3.20, a reviewer asked:

“Although I got the idea and see the advantages on refactoring I think it makes
the code less readable and in some cases look like the code lacks a standard, e.g
one may ask why only this map entry is a constant?”

+ private static final String CASE_SENSITIVE_TABLE_NAMES = "caseSensitiveTableNames";

putIfAbsent(properties, "batchedStatements", false);
putIfAbsent(properties, "qualifiedTableNames", false);
- putIfAbsent(properties, "caseSensitiveTableNames", false)
+ putIfAbsent(properties, CASE_SENSITIVE_TABLE_NAMES, false);
putIfAbsent(properties, "batchSize", 100);
putIfAbsent(properties, "fetchSize", 100);
putIfAbsent(properties, "allowEmptyFields", false);

Listing 3.20. Fix suggestion for a violation of rule C3 that introduces a stylistic inconsistency.

This fix was declined in project database-rider, even though similar ones were accepted in
other projects (such as Eclipse) after the other string literals were extracted as constants in
a similar way.

Sometimes reviewers disagree on their opinion about pull requests. For instance, we re-
ceived four diverging reviews from four distinct reviewers about one pull request containing
two fixes for violations of rule C3 in project primefaces. One developer argued for rejecting
the change, others for accepting the change with modifications (with each reviewer sug-
gesting a different modification), and others still arguing against other reviewers’ opinions.
These are interesting cases that may deserve further research, especially because several
projects require at least two reviewers to agree to approve a change.

Sometimes fixing a violation is not enough [13]. Developers may not be completely
satisfied with the fix we generate, and may request changes. In some initial experiments,
we received several similar modification requests for fix suggestions to violations of rule C7

52 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

(entrySet() should be iterated when both key and value are needed); in the end, we changed
the way the fix is generated to accommodate the requests. For example, the fix in Listing 3.21
received the following feedback from maintainers of Eclipse:

“For readability, please assign entry.getKey() to the menuElement variable”

- for (MMenuElement menuElement : new HashSet<>(modelToContribution.keySet())) {
- if (menuElement instanceof MDynamicMenuContribution) {
+ for (Entry<MMenuElement, IContributionItem> entry : modelToContribution.entrySet()) {
+ if (entry.getKey() instanceof MDynamicMenuContribution) {

Listing 3.21. Fix suggestion for a violation of rule C7 generated in a preliminary version of SpongeBugs.

We received practically the same feedback from developers of Payara, which prompted us
to modify how SpongeBugs generates fix suggestions for violations of rule C7. Listing 3.22
shows the fixed suggestion with the new template. All fixes generated using this refined fix
template, which we used in the experiments reported in this paper, were accepted by the
developers without modifications.

- for (MMenuElement menuElement : new HashSet<>(modelToContribution.keySet())) {
+ for (Entry<MMenuElement, IContributionItem> entry : modelToContribution.entrySet()) {
+ MMenuElement menuElement = entry.getKey();

if (menuElement instanceof MDynamicMenuContribution) {

Listing 3.22. Fix suggestion for a violation of rule C7 generated in the final version of SpongeBugs.

Overall, SpongeBugs’s fix suggestions were often found of high enough quality perceived
to be accepted—many times without modifications. At the same time, developers may eval-
uate the acceptability of a fix suggestions within a broader context, which includes informa-
tion and conventions that are not directly available to SpongeBugs or any other static code
analyzer. Whether to enforce some rules may also depend on a developer’s individual pref-
erences; for example one developer remarked that fixes for rule C5 (Strings literals should be
placed on the left side when checking for equality) are “style preferences”. The fact that many of
such fix suggestions were still accepted is additional evidence that SpongeBugs’s approach
was generally successful.

3.4.3 RQ3: Performance

To answer RQ3 (“How efficient is SpongeBugs?”), we report some runtime performance
measures of SpongeBugs on the projects. All experiments ran on a Windows 10 laptop with
an Intel-i7 processor and 16 GB of RAM. We used Rascal’s native benchmark library{23} to
measure how long our transformations take to run on the projects considered in Table 3.7.
Table 3.11 show the performance outcomes. For each of the measurements in this section,
we follow recommendations on measuring performance [71]: we restart the laptop after
each measurement, to avoid any startup performance bias (i.e., classes already loaded); and
also provide summary descriptive statistics on 5 repeated runs of SpongeBugs.

Project mssql-jdbc is an outlier due to its relatively low count of files analyzed with a
long measured time. This is because its files tend to be large—multiple files with more than

3.4 Empirical Evaluation of SpongeBugs: Results and Discussion 53

Table 3.11. Descriptive statistics summarizing 5 repeated runs of SpongeBugs. Time is measured in
minutes.

RUNNING TIME

PROJECT FILES ANALYZED MEAN ST. DEV.

Eclipse IDE 5,282 102.3 m 2.31 m
SonarQube 3,876 25.3 m 0.84 m
SpotBugs 2,564 30.6 m 1.20 m
Ant Media Server 228 3.9 m 0.14 m
atomix 1,228 10.1 m 0.74 m
database-rider 109 0.8 m 0.04 m
ddf 2,316 28.6 m 1.55 m
DependencyCheck 245 5.5 m 0.21 m
keanu 445 2.9 m 0.09 m
mssql-jdbc 158 23.2 m 0.62 m
Payara 8,156 166.1 m 8.88 m
primefaces 1,080 15.5 m 1.45 m

1K lines. Larger files might imply more complex code, and therefore more complex ASTs,
which consequently leads to more rule applications. To explore this hypothesis, we ran our
transformations on a subset of these larger files. As seen in Table 3.12, five larger files are
responsible for more than 12 minutes (52%) of running time. Additionally, file dtv takes
on average longer to run than SQLServerConnection; even though dtv has 1,600 less lines
of code. File dtv has numerous class declarations and methods with more than 300 lines,
containing multiple switch, if, and try/catch statements.

Table 3.12. Descriptive statistics summarizing 5 repeated runs of SpongeBugs on the 5 largest files in
projects mssql-jdbc. Time is measured in seconds; size is given in non-blank non-comment lines of
code LOC.

RUNNING TIME

FILE LOC MEAN ST. DEV.

SQLServerConnection 4,428 202 s 14.1 s
SQLServerResultSet 3,858 158 s 22.9 s
dtv 2,823 208 s 17.8 s
SQLServerBulkCopy 2,529 86 s 5.4 s
SQLServerPreparedStatement 2,285 78 s 6.9 s

Generating some fix suggestions takes longer than others. We investigated this aspect
more closely in SpotBugs, as it includes more than a thousand files, and contains multiple test
cases for the rules it implements. Excluding test files in src/test/java does not work for
SpotBugs, which puts tests in another location, thus greatly increasing the amount of code

54 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

that SpongeBugs analyzes. SpongeBugs takes considerably longer to run on rules B1, B2/C6,
and C1. The main reason is that step 1 in these rules raises several false positives, which are
then filtered out by the more computationally expensive step 2 (see Section 3.2.2). For exam-
ple, step 1’s filtering for rule B1 (Strings and boxed types should be compared using equals()),
shown in Listing 3.23, is not very restrictive. One can imagine that several files have a ref-
erence to a String (covered by hasWrapper()) and also use == or != for comparison oper-
ators. Contrast this to step 1’s filtering for rule C9 (Collections.EMPTY_LIST. . . should not
be used), shown in Listing 3.24, which is much more restrictive; as a result SpongeBugs runs
in under 20 seconds for rule C9.

return hasWrapper(javaFileContent) && hasEqualityOperator(javaFileContent);

Listing 3.23. Violation textual pattern in the implementation of rule B1

return findFirst(javaFileContent, "Collections.EMPTY") != -1;

Listing 3.24. Violation textual pattern in the implementation of rule C9

Overall, we found that SpongeBugs’s approach to fix warnings of SATs is scalable on
projects of realistic size. SpongeBugs could be reimplemented to run much faster if it directly
used the output of static code analysis tools, which indicate precise locations of violations.
While we preferred to make SpongeBugs’s implementation self contained to decouple from
the details of each specific SAT, we plan to explore other optimizations in future work.

The Impact of the Textual Pattern Matching Step

Our approach of looking for violations’ textual patterns (step 1 in Section 3.2.2) might inad-
vertently skip cases in which SpongeBugs could devise a fix. Since we are matching strings,
a minimal difference in layout–such as an extra blank space, or a line break—can be missed
by step 1. We modified SpongeBugs’ implementation by disabling step 1 and repeated our
evaluation. Table 3.13 shows how many additional fixes were produced in comparison to
running SpongeBugs with step 1. SpongeBugs produced only 18 additional fixes (0.24%).
Listing 3.25 shows one example where step 1 fails to recognize a pattern for rule C5 (Strings
literals should be placed on the left side when checking for equality). The reason is the blank
space between the parenthesis of the method call and the argument.

if (lookupName.equals("java:comp/BeanManager")) {

Listing 3.25. Warning pattern of rule C5 that step 1 misses.

The fixes all happened in project Payara, which is responsible for almost 60% of all 7,364
warnings detected by SonarQube. We also repeated the runtime performance measurements
when step 1 is disabled. Table 3.14 shows that on average the runtime increased by 124%,
increasing as high as almost 200% for projects SonarQube and keanu. Interestingly, project
mssql-jdbc had the lowest increase (43%). This can be explained by its prevalence of large
classes (as analyzed in Table 3.12), which means that most likely, the classes were already
being analyzed by AST visiting (step 2). We can conclude that our choice of having a textual
pattern matching step is well justified, as we judge the 0.24% increase on fixes is not worth
having at the cost of runtime increase ranging from 43% to 196%.

3.4 Empirical Evaluation of SpongeBugs: Results and Discussion 55

Table 3.13. For each project and each rule checked by SonarQube, the table reports the number of
additional fixes when running SpongeBugs without violation textual pattern (step 1). The bottom
rows summarize the TOTAL number of additional fixes, and what percentage of the overall violations
reported by SonarQube these additional fixes correspond to; similarly the rightmost column reports
the TOTAL per project.

PROJECT B1 B2 C1 C2 C3 C4 C5 C6 C7 C8 C9 TOTAL

Eclipse IDE 0 0 0 0 0 0 0 0 – 0 0 0

SonarQube – – 0 – – – 0 – – – – 0

SpotBugs 0 0 0 0 0 0 0 – – 0 – 0

atomix 0 – 0 – – – 0 – – 0 0 0

Ant Media Server – – 0 0 0 0 0 0 – 0 0 0

database-rider – – 0 0 – – 0 – 0 0 – 0

ddf 0 – 0 – 0 – 0 – 0 0 0 0

DependencyCheck – – 0 0 – – 0 – – 0 – 0

keanu 0 – – – – – 0 – 0 0 – 0

mssql-jdbc 0 – 0 0 – 0 0 0 – 0 – 0

Payara 0 – 10 1 0 0 7 0 0 0 0 18

primefaces – – 0 0 0 0 0 – 0 0 0 0

TOTAL # 0 0 10 1 0 0 7 0 0 0 0 18

OVERALL % 0% 0% 0.34% 0.38% 0% 0% 0.26% 0% 0% 0% 0% 0.24%

Table 3.14. Summary of 5 repeated runs of SpongeBugs with and without violation textual pattern
filtering (step 1). Time is measured in minutes.

PROJECT MEAN WITH STEP 1 MEAN W/O STEP 1 INCREASE %

Eclipse IDE 102.3 m 235.6 m 130 %

SonarQube 25.3 m 74.6 m 195 %

SpotBugs 30.6 m 86.8 m 184 %

Ant Media Server 3.9 m 8.4 m 115 %

atomix 10.1 m 28.9 m 187 %

database-rider 0.8 m 2.0 m 137 %

ddf 28.6 m 67.2 m 135 %

DependencyCheck 5.5 m 11.3 m 107 %

keanu 2.9 m 8.5 m 196 %

mssql-jdbc 23.2 m 33.2 m 43 %

Payara 166.1 m 342.1 m 106 %

primefaces 15.5 m 31.4 m 103 %

OVERALL 414.6 m 930.0 m 124 %

56 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

3.4.4 RQ4: Student Projects

To evaluate applicability and usefulness of SpongeBugs on code written by non-professionals,
we ran additional experiments where we applied it to the 5 student projects presented in
Section 18.

First of all, we ran SonarQube on these projects checking the usual 11 rules supported
by SpongeBugs. Table 3.15 shows the results in terms of number of violations reported by
SonarQube for every thousand lines of code. The same table also shows the same measure
for the open-source projects used in the rest of the evaluation. Overall, rule violations occur
with higher frequencies in the student projects than in the open-source projects—as it can
be expected from code written by non-professional. Nonetheless, the student code generally
is of high quality since its violations are not much higher. Remember that all projects but
project 5 explicitly required students to check their projects with SonarQube and to modify
the code to reduce the number of reported violations. The only project in which students
were not required to use SonarQube is also the one with the largest number of violations per
line of code, but the difference with projects of the same course is not big. Since all students
knew SonarQube as a tool from previous courses, it is possible that they used it regardless of
whether it was required by the project’s specification, and that they generally paid attention
to writing code that conforms with accepted coding guidelines.

Table 3.15 summarizes the results of applying SpongeBugs to the rule violations in stu-
dent projects. For all violations but one (98% of all violations), SpongeBugs produced a
correct fix suggestion that avoided the violation. At a high level, these results are compara-
ble to those obtained on the open-source projects.

The results on student projects are consistent with those on open-source projects also in
terms of which rules are most frequently violated and fixed. The most frequent violations are
of rules C1, C5, and C8—in this order in both the student projects and in the open-source
projects. On the other hand, student projects violated none of rules B1, B2, C4, and C9; in
the open-source projects there were several violations of these rules, but they accounted for
only about the 6% of all violations, and did not occur in all projects. Students ran SonarQube
with a custom profile, which excluded some of the rules SpongeBugs checks; as a result even
projects that were required to use SonarQube still incur some rule violations.

3.4.5 RQ5: Code with Behavioral Bugs

To answer RQ5, we ran SpongeBugs on all 438 bugs in Defects4J. Each experiment targets
one bug and consists of two steps:

1. Run SpongeBugs on the buggy code, and apply all suggested fixes.

2. Run the tests associated with the code (which include at least one failing test) on the
version with all SpongeBugs suggestions, and record which tests are passing or failing.

By running the test suite that comes with every bug, we can assess whether SpongeBugs’s
suggestions interfere with the intended program behavior; and, if they do, whether they
improve or worsen correctness as captured by the tests.

3.4 Empirical Evaluation of SpongeBugs: Results and Discussion 57

Table 3.15. Top half of table: for each student project, its size LOC in non-blank non-comment lines
of code and the number of violations of the 11 rules checked by SpongeBugs that are detected by
SonarQube per thousands of lines of code (VIOLATIONS/KLOC). Bottom half of table: the same data
about the open-source projects used in the rest of the evaluation.

PROJECT LOC VIOLATIONS / KLOC

Project 1 6.8 K 0.00

Project 2 5.2 K 4.23

Project 3 2.5 K 0.80

Project 4 2.4 K 4.60

Project 5 3.6 K 5.80

Eclipse IDE 743 K 1.03

SonarQube 500 K 0.22

SpotBugs 280 K 1.80

atomix 550 K 0.13

Ant Media Server 43 K 1.12

database-rider 21 K 0.67

ddf 2.5 M 0.01

DependencyCheck 182 K 0.43

keanu 145 K 0.15

mssql-jdbc 79 K 5.23

Payara 1.95 M 2.26

primefaces 310 K 2.23

Overall, SpongeBugs suggested 675 fix suggestions across all bugs in Defects4J; as usual,
all suggestions compile without errors. In the overwhelming majority of cases, SpongeBugs’s
suggestions did not alter program behavior: for 22,253 out of 22,270 tests in Defects4J, tests
that were previously passing were still passing, and tests that were previously failing were
still failing. As expected, SpongeBugs did not fix any of the semantic bugs in Defects4J,
which is what we expected since its rules do not target behavioral correctness.

The exceptions involved 17 tests in Defects4J that were originally passing (in the buggy
version of each program) but turned into failing tests after we applied SpongeBugs’s sug-
gestions. In these cases, SpongeBugs altered program behavior in a way that is inconsistent
with the intended one captured by the originally passing tests.

All these 17 cases involved spurious violations of rule B1 Strings and boxed types should
be compared using equals(). We observed one similar case of spurious violation in Sponge-
Bugs’s detection of rule B1 in the experiments of Section 3.4.1, but the phenomenon is more

58 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

Table 3.16. For each student project and each rule, the table reports two numbers x/y: x is the number
of warnings violating found by SonarQube on the original project; y is the number of warnings that
have disappeared after running SpongeBugs on the project and applying all its fix suggestions for the
rule. The two rightmost columns summarize the data per project (TOTAL), and report the percentage
of warnings that SpongeBugs successfully fixed (FIXED %). The two bottom rows summarize the data
per rule in the same way. For brevity, the table only reports the rules for which SonarQube found at
least one violation in some project.

PROJECT C1 C3 C5 C7 C8 TOTAL FIXED %

Project 1 – – – – – – –

Project 2 18/18 – – – 4/4 22/22 100%

Project 3 – – 2/2 – – 2/2 100%

Project 4 2/2 – 8/8 1/1 – 11/11 100%

Project 5 8/8 1/0 3/3 2/2 7/7 21/20 95%

TOTAL 28/28 1/0 13/13 3/3 11/11 56/55 –

FIXED % 100% 0% 100% 100% 100% 98% –

prominent in Defects4J. Let’s outline these cases of spurious detection to better understand
where SpongeBugs fails. In all cases, SonarQube reports the same spurious warnings.

Out of the 17 failing tests, 14 are from project Closure{24}—a JavaScript optimizing com-
piler written in Java.

SpongeBugs found 5 violations of rule B1 in the buggy project version included in De-
fects4J; all of these violations, reported by both SpongeBugs and SonarQube, are spurious.

The root cause of these is the nature of project Closure, which relies on sophisticated
optimizations involving string manipulation. Reference equality == is used instead of object
equality equals() as much as possible—when it is semantically correct—because it is faster.
SpongeBugs’s fix suggestions replace expressions like s == t with s.equals(t); however,
the latter implies the former only if s is not null. Thus, some of SpongeBugs’s fix suggestions
introduce a crash in test that exercise such code with null strings. The following example–
which is the single responsible for the 14 failing tests—in project Closure is hard to miss,
since the programmer explicitly documented their intention to use reference equality:

//yes, s1 != s2, not !s1.equals(s2)

if (lastSourceFile != sourceFile)

The other 3 tests that became failing after applying SpongeBugs’s suggestions are from
project Lang—Apache’s popular Commons Lang base library for Java.

SpongeBugs found 3 violations of rule B1 in the buggy project version included in De-
fects4J; all of these violations, reported by both SpongeBugs and SonarQube, are spurious.

The root cause of these is again the way in which null strings are handled. Project Lang’s
API for string uses defensive programming, and hence it generally supports null values in-

3.4 Empirical Evaluation of SpongeBugs: Results and Discussion 59

stead of valid String objects. Take method indexOfDifference(String s1, String s2)

of class StringUtils,{25} which returns the lowest index at which s1 differs from s2. The
method’s JavaDoc documentation explicitly says that s1, s2, or both may be null; corre-
spondingly, reference equality is generally used before object equality, so as to be able to
reliably compare strings that are null. When SpongeBugs introduces changes like:

if (str1 == str) −→ if (str1.equals(str2))

the program will throw a NullPointerException whenever str1 is null.
Interestingly, the developers of Apache Commons modified method indexOfDifference

in version 3.0 of the library so that it inputs two CharacterSequence objects instead of
strings. Comparing CharacterSequence objects by reference is not considered an anti-
pattern, and hence neither SonarQube nor SpongeBugs would flag this more recent version
of the library. While we could not verify the actual intentions of the developers, it is possi-
ble that they did consider string comparisons using == something to be avoided whenever
possible—thus partially vindicating SonarQube’s and SpongeBugs’s strict application of rule
B1.

Another spurious violation of rule B1, in Apache Commons class BooleanUtils, fol-
lows a similar pattern. Method toBoolean(String str) accepts null as argument str,
but SpongeBugs’s fix suggestion would crash with a NullPointerException in this case:

if (str1 == "true") −→ if (str1.equals("true"))

Interestingly, if we combine SpongeBugs’s suggestion for rule B1 with its suggestion for
rule C5 (Strings literals should be placed on the left-hand side when checking for equality) the
code reverts to handling the case str == null correctly:

if (str1.equals("true")) −→ if ("true".equals(str1))

This suggests that static analysis rules are sometimes not independent—and hence stylistic
guidelines should be followed consistently.

The main conclusions we can draw from the experiments with Defects4J are as follows:

• As expected by its design, SpongeBugs cannot fix semantic (behavioral) bugs because
it targets syntactic (stylistic) rules.

• By and large, SpongeBugs’s fix suggestions do not alter program behavior in any un-
intended way.

• For programs following unusual conventions or particular implementation styles, the
rules checked by SonarQube and SpongeBugs may sometimes misfire. Often, it is still
possible to refactor the program so that it follows the intended behavior while also
adhering to conventional stylistic rules.

60 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

3.4.6 Additional Findings

In this section we summarize findings we collected based on the feedback given by reviews
of our pull requests.

Some fixes are accepted without modifications. Some fixes are uniformly accepted with-
out modifications. For example those for rule C2 (String function use should be optimized for
single characters), which bring performance benefits and only involve minor modifications
(as shown in Listing 3.26: change string to character).

- int otherPos = myStr.lastIndexOf("r");
+ int otherPos = myStr.lastIndexOf(’r’);

Listing 3.26. Example of a fix for a violation of rule C2.

SAT adherence is stricter in new code. Some projects require SAT compliance only on new
pull requests. This means that previously committed code represent accepted technical debt.
For instance, mssql-jdbc’s contribution rules state that “New developed code should pass
SonarQube rules”. A SpotBugs maintainer also said “I personally don’t check it so seriously.
I use SonarCloud to prevent from adding more problems in new PR”. Some use SonarCloud
not only for identifying violations, but for test coverage checks.

Fixing violations as a contribution to open source. Almost all the responses to our ques-
tions about submitting fixes were welcoming—along the lines of help is always welcome.
Since one does not need a deep understanding of a project domain to fix several SATs’ rules,
and the corresponding fixes are generally easy to review, submitting patches to fix violations
is an approachable way of contributing to open source development.

Fixing violations induce other clean-code activities. Sometimes developers requested
modifications that were not the target of our fixes. While our transformations strictly re-
solved the issue raised by static analysis, developers were aware of the code as a whole and
requested modifications to preserve and improve code quality.

Fixing issues promotes discussion. While some fixes were accepted “as is”, others required
substantial discussion. We already mentioned a pull request for primefaces that was intensely
debated by four maintainers. A maintainer even drilled down on some Java Virtual Machine
details that were relevant to the same discussion. Developers are much more inclined to give
feedback when it is about code they write and maintain.

3.5 Limitations and Threats to Validity

Some of SpongeBugs’s transformations may violate a project’s stylistic guidelines [112]. As
an example, project primefaces uses a rule7 about the order of variable declarations within a
class that requires that private constants (private static final) be defined after public
constants. SpongeBugs’s fixes for rule C1 (String literals should not be duplicated) may violate

7http://checkstyle.sourceforge.net/apidocs/com/puppycrawl/tools/checkstyle/checks/coding/
DeclarationOrderCheck.html

http://checkstyle.sourceforge.net/apidocs/com/puppycrawl/tools/checkstyle/checks/coding/DeclarationOrderCheck.html
http://checkstyle.sourceforge.net/apidocs/com/puppycrawl/tools/checkstyle/checks/coding/DeclarationOrderCheck.html

3.6 Conclusions: SpongeBugs 61

this stylistic rule, since constants are added as the first declaration in the class. Another
example of stylistic rule that SpongeBugs may violate is one about empty lines between
statements.8 Overall, these limitations appear minor, and it should not be difficult to tweak
SpongeBugs’s implementation so that it fixes comply with additional stylistic rules.

Static code analysis tools are a natural target for fix suggestion generation, as one can
automatically check whether a transformation removes the source of violation by rerunning
the static analyzer [142]. In the case of SonarCloud, which runs in the cloud, the appeal
of automatically generating fixes is even greater, as any technique can be easily scaled to
benefit a huge numbers of users.

We checked the applicability of SpongeBugs on hundreds of different examples, but there
remain cases where our approach fails to generate a suitable fix suggestions. There are two
reasons when this happens:

1. Implementation limitations. One current limitation of SpongeBugs is that its code anal-
ysis is restricted to a single file at a time, so it cannot generate fixes that depend on
information in other files. Another limitation is that SpongeBugs does not not analyze
methods’ return types.

2. Restricted fix templates. While manually designed templates can be effective, the ef-
fort to implement them can be prohibitive [114]. With this in mind, we deliberately
avoided implementing templates that were too hard to implement relative to how often
they would have been useful.

SpongeBugs’s current implementation does not rely on the output of SATs. This intro-
duces some occasional inconsistencies, as well as cases where SpongeBugs cannot process
a violation reported by a SAT. An example, discussed above, is rule C9: SpongeBugs only
considers violation of the rule that involve a return statement. These limitations of Sponge-
Bugs are not fundamental, but reflect trade-offs between efficiency of its implementation
and generality of the technique it implements. We only ran SpongeBugs on projects that
normally used SonarQube or SpotBugs. Even though SpongeBugs is likely to be useful also
on general projects, we leave a more extensive experimental evaluation to future work.

3.6 Conclusions: SpongeBugs

In this chapter we introduced a new approach and a tool (SpongeBugs) that finds and repairs
violations of rules checked by static code analysis tools such as SonarQube, FindBugs, and
SpotBugs. We designed SpongeBugs to deal with rule violations that are frequently fixed in
both private and open-source projects. We assessed SpongeBugs by running it on 12 popular
open source projects, and submitted a large portion (total of 946) of the fixes it generated
as pull requests in the projects. Overall, project maintainers accepted 825 (87%) of those
fixes—most of them (97%) without any modifications. A manual analysis also confirmed
that SpongeBugs is very accurate, as only a tiny fraction of all its fix suggestions can be

8http://checkstyle.sourceforge.net/config_whitespace.html#EmptyLineSeparator

http://checkstyle.sourceforge.net/config_whitespace.html#EmptyLineSeparator

62 Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings

classified as false positives. We also assessed SpongeBugs’s performance, showing that it
scales to large projects (under 10 minutes on projects as large as half a million LOC); and
its applicability to student code and to the Defects4J curated collection of bugs. Overall,
the results suggest that SpongeBugs can be an effective approach to help programmers fix
warnings issued by static code analysis tools—thus contributing to increasing the usability
of these tools and, in turn, the overall quality of software systems.

Artifacts: the complete artifacts to support the replication of our experiments are avail-
able: https://github.com/dvmarcilio/spongebugs.

https://github.com/dvmarcilio/spongebugs

Part III
Analyzing Exception Behavior

4
How Java Programmers Test Exception Behavior

Exceptions often signal faulty or undesired behavior; hence, high-quality test suites should
also target exception behavior. This chapter reports on a large-scale study of exception tests—
which exercise exception behavior—in 1 157 open-source Java projects hosted on GitHub.
We analyzed JUnit exception tests to understand what kinds of exceptions are more fre-
quently tested, what coding patterns are used, and how features of a project, such as its
size and number of contributors, correlate to the characteristics of its exception tests. We
found that exception tests are only 13% of all tests, but tend to be larger than other tests on
average; unchecked exceptions are tested twice as frequently as checked ones; 42% of all
exception tests use try/catch blocks and usually are larger than those using other idioms;
and bigger projects with more contributors tend to have more exception tests written using
different styles.

Structure of the Chapter

• Section 4.1 provides motivation for this chapter.

• Section 4.2 contextualizes the reader with background concepts, including the excep-
tion tests coding patterns.

• Section 4.3 describes our research questions, project selection, and analysis process.

• Section 4.4 presents our results and findings.

• Section 4.5 presents the threats that affect the validity of our work.

• Section 4.6 discusses the possible applications of our findings.

• Section 4.7 draws our conclusions.

65

66 How Java Programmers Test Exception Behavior

4.1 Introduction

The importance of testing in software development has become conventional wisdom; yet,
writing high-quality tests remains a challenging endeavor [5, 161]. Among all different kinds
of tests that are written, in this chapter we focus on those that exercise exception behavior—or
exception tests for short. Exception behavior is a frequent source of failures [74], and is often
implicated in anti-patterns and misuses [4]; on the other hand, proper exception-handling
code is a necessary component of robust, maintainable software [21, 133]. Therefore, testing
exception behavior is critical in building comprehensive test suites. However, dealing with
exceptions—including in tests1—can be tricky, because an exception behavior’s control flow
is intrinsically unstructured (an exception can propagate through the call stack) and it is easy
to miss some “corner cases” of exception-inducing inputs [30]. Testing practices have been
studied extensively, and exception behavior is an increasingly popular empirical research
target, but the combination of the two topics—exception testing—has so far received little
attention.

We contribute to narrowing this knowledge gap with a large-scale empirical study of ex-
ception testing in Java. We analyzed all exception tests we could detect written using any
version of the JUnit framework in 1 157 open-source Java projects—including numerous
widely-used frameworks maintained by Apache, Google, and Spring—comprising 1123 846
tests. The main findings of this analysis, include:

• Exception tests are often included as part of the test-writing effort: 66% of projects
with tests also include some exception tests, and 13% of all tests target exceptions. On
average, an exception test is 110% the size (mean lines of code) of any test.

• Exception tests most frequently target Java’s standard exception classes (over 2/3 of
all exception tests), and unchecked exceptions (about twice as frequently as checked
exceptions).

• A standard try/catch block is the most common way of writing an exception test,
followed by JUnit’s @Test(expected=...) annotation.

• Exception tests written using try/catch blocks tend to be the longest; those written
using @Test(expected=...) tend to be the shortest.

• Larger projects with more contributors are more likely to include exception tests writ-
ten in a variety of styles.

1A StackOverflow question{26} asking how to write exception tests in JUnit has over 1.3 million views and
several answers from experts such as one of Mockito’s core contributors and StackOverflow users with high
reputation.

4.2 Background 67

4.2 Background

4.2.1 Exceptions: What They Are For

Exceptions are used to signal that something went wrong during program execution. A
program may include exception handling code, which executes when an exception is raised
to try to recover from the error or at least mitigate it. Thus, at a high-level, exceptions can
help improve program robustness.

In an object-oriented language like Java, exceptions are instances of some exception
classes; different exception classes characterize different ways of using exceptions. In our
analysis, we consider three orthogonal (and standard [72, 133, 140]) classifications accord-
ing to origin, kind, and behavioral usage.

Origin an exception class’s origin in a given project depends on where it is defined: in
Java’s standard libraries, local to the project’s code base, or in an external library.

Kind according to its type,{27} an exception may be unchecked (a subtype of RuntimeException
or Error) or checked (any other subtype of Throwable).{28}

Usage exceptions are used to signal three main different categories of program behav-
ior [72, §4.4] [140, §12] [133, §8.4], which we refer to as usage failure, fault, and return. A failure

is a low-level error that usually depends on an exception state of the execution environment;
for instance, the program runs out of memory (OutOfMemoryError). A fault signals the vio-
lation of a program’s expected behavior; for instance, an array is accessed with an invalid
index (ArrayIndexOutOfBoundsException). Category return captures improper usages of
exceptions—not to signal erroneous conditions but to propagate information outside of the
language’s structured control flow. For example, to “break out of a complex, nested control
flow”{29} similarly to a goto; or to signal the end of a file (java.io.EOFException).

4.2.2 Exception Testing Patterns

An exception test is a test that may trigger exception behavior in the code it exercises. Based
on the documentation of JUnit{30} and other testing libraries,{31} as well as on other empir-
ical studies [43, 175, 188, 202], we identified five main coding patterns that programmers
use to write exception tests. This section outlines them and discusses their comparative ad-
vantages and disadvantages. Figure 4.1 shows the patterns in code, Table 4.1 summarizes
which libraries support which patterns, and Section 4.4.3 discusses their distribution in the
analyzed projects.

Pattern try/catch

Pattern try/catch uses Java’s built-in try/catch statements, and hence it does not require any
library. Testing whether some testing code throws an exception amounts to setting up
a catch block for an exception of the expected type. Pattern try/catch’s main strength is its
flexibility: since the test has to explicitly set up the exception-handling code and can include
several catch blocks or multi-catch exception types, it can check any features of any number

68 How Java Programmers Test Exception Behavior

Table 4.1. The libraries or framework where each coding PATTERN (for checking whether an exception
was thrown) is supported (green check icon), deprecated (orange exclamation icon), or not supported
(red X icon).

plain JUnit assertion
PATTERN Java 4.0 4.7 4.13 5.0 libraries

try/catch Ë Ë Ë Ë Ë Ë
test é Ë Ë Ë é é
rule é é Ë U é é
assert é é é Ë Ë Ë
generic é é é é é Ë

@Test
void tryCatch()

throws Exception {
Exception caught =

,→ null;
try { /* testing

,→ code */ }
catch (Exception e)
{ caught = e; }
if (caught == null)
fail(); // fail
else pass(); // pass
}

(a) Pattern try/catch.

@Test(expected =
Exception.class)

void test()
throws Exception {
/* testing code */
}

(b) Pattern expect test.

@Rule
ExpectedException ex;

@Test
void rule()

throws Exception {
ex =
ExpectedException.none();

ex.expect(Exception.class);
ex.expectMessage("error");
/* testing code */
}

(c) Pattern expect rule.

@Test void assert()
throws Exception {

Exception ex =
Assertions.assertThrows(
Exception.class,
()->/* testing code */
);
assertEquals("error",

ex.getMessage());
}

(d) Pattern assert throws.

@Test void generic()
throws Exception {
assertThatThrownBy(
()->/* testing code */

).isInstanceOf(
Exception.class)

.hasMessage("error");
}

(e) Pattern generic assertion.

Figure 4.1. The main coding patterns that programmers can use to test for exception behavior in Java.

4.2 Background 69

of thrown exceptions, at any point during the execution of the test, and it can even check
that a certain exception is not thrown (by failing inside a catch block). On the flip side, the
required boilerplate code may result in tests that are verbose.

Pattern test

Version 4 of JUnit (released in 2006)2 was the first providing a custom feature to write
exception tests: by adding a parameter expected to the @Test annotation that marks JUnit
tests, programmers can specify which tests are expected to throw which exceptions. Pattern
test can make exception tests very concise and readable. However, it has limited flexibility: it
is impossible to express which part of the testing code is expected to throw an exception,
to test for multiple exception types, or to specify any attributes of the thrown exceptions other
than their type(for instance, we cannot inspect messages).

Pattern rule

Version 4.7 of JUnit (released in 2009) introduced a new way of writing exception tests,
using a field of type ExpectedException marked with annotation @Rule. Any test can set
up such field to declare that the testing code is expected to throw an exception of a certain
type. Pattern rule is somewhat more flexible than pattern test, since we can specify attributes
of the expected exception other than its type (for example, with method expectMessage,
its message). It can also designate that a specific statement of the testing code should
throw an exception: this is the statement immediately following the calls to methods of
class ExpectedException. However, patterns test and rule share the limitations that all code
in testing code following the statement that throws the first exception will be ignored, and
that they cannot specify multiple exception types in the same testing method. Tests written
according to pattern rule remain concise but are stylistically quite different from JUnit’s run-
of-the-mill idioms that usually assert the expected outcome after the testing code rather
than before it. This may be the reason why this pattern was removed from JUnit as soon as
assertThrows became available.

Pattern assert throws

Static assertion method assertThrows was first introduced in JUnit 5.0 (released in 2017)
and then added to JUnit 4.13 in 2020. Since assertThrows inputs the testing code as
a lambda, this pattern is expressible only since Java 8. Pattern assert finally combines con-
ciseness and flexibility, since assertThrows also returns the thrown exception object, which
can be further inspected in the test code. It also blends with the other assertion methods
available in JUnit, and with the test idioms they support. Pattern assert can be considered
the recommended style to write exception tests since JUnit 5.0 (which no longer supports3

patterns test and rule).

2We report release dates of stable releases, even though sometimes a beta release was made available to the
public earlier on.

3Backward compatibility is still possible through JUnit’s module Vintage.

70 How Java Programmers Test Exception Behavior

Pattern generic assertion

Assertion libraries—such as Hamcrest, AssertJ, and Truth—provide flexible APIs to express
all sorts of expected behavior—including exception behavior. Only AssertJ (used in Fig-
ure 4.1e) among these libraries includes methods such as assertThatThrownBy that im-
plicitly catch any exceptions thrown by testing code; the other libraries offer methods
to specify properties of exception objects but still rely on Java’s catch blocks or JUnit’s
assertThrows method to perform the actual catching. As its name suggests, pattern generic is
the most flexible approach to writing exception tests. It is easy to combine assertion methods
in chains of method calls using the so-called “fluent” style, making it easier and more read-
able to write complex tests [202]. This structure also helps readability, supports powerful
auto-completion suggestions when used within an IDE, and automatically generates infor-
mative error messages whenever an assertion fails. Besides the dependency on an additional
library, the main disadvantages of using assertion libraries may come from their great flex-
ibility: when the same behavior constraint can be expressed in several different ways, it is
harder to enforce a consistent style within a project, and more refactoring and debugging
effort may be needed.

4.3 Study Design

4.3.1 Research Questions

Our overall goal is understanding how Java developers test for exception behavior. To this
end, we consider three main research questions:

RQ1: How often is exception behavior tested?

The first research question investigates how usual exception testing is in Java projects—both
in absolute terms and relative to testing in general.

RQ2: What kind of exception behavior is tested?

The second research question looks for trends in the kinds of exception classes that feature
more or less frequently in exception tests, and how these affect other characteristics of the
tests such as their size.

RQ3: What coding patterns are used for exception testing?

The third research question analyzes how exception tests are written, and how they use the
features of the available testing frameworks.

4.3.2 Project Selection

We started from [148]’s list of 2672 Java projects—those with the most stars hosted on
GitHub between November and December 2019. GitHub stars indicate a project’s popularity

4.3 Study Design 71

and are commonly used to select source code of consistent quality [37, 123, 148, 154, 204].
Given our focus on tests, we further discarded projects that 1. have no detectable JUnit
tests4 (1 128 projects), or 2. have only the two tests that Android Studio IDE generates
automatically by default{32} (374 projects). The second criterion is relevant because the
Android Studio IDE makes it easy to generate two example tests for Android projects [18],
which both include exception patterns. Therefore we exclude projects that do not add any
tests beyond those automatically generated. This leaves 1 157 Java projects with some non-
trivial tests, which are the focus of our analysis.5 The final project selection includes large
frameworks and applications, as well as projects in different domains. The filtering criteria
indicate these are projects of good quality whose developers have devoted at least some
effort to writing JUnit tests (a median of 91 commits of test code per project).

4.3.3 Analysis Process

We built JUnitScrambler: a tool to extract data about exception tests in Java projects. The
tool works in three steps:

• build: the project from its sources

• discover: the test code in the project

• analyze: the discovered tests for exception testing patterns

Step build looks for recipes for Java’s most popular build systems—Maven, Gradle, and
Ant—and uses them to compile the project and its tests. It also tries to detect the required
Java version and all external dependencies. Automatically looking for this information in
build recipes may fail, or a project may not use a build script that we recognize.

If a project is built successfully, step discover uses JUnit 5’s test discovery API{34}—which
can process JUnit tests in any versions, including advanced features of JUnit 5 and non trivial
test hierarchies—to find tests. JUnit’s test discovery may work even when the build was
incomplete; in addition, our tool looks for references to executed testing classes among the
output of the build process. As a last resort, our tool scans every Java source file in the project,
and marks as “possible tests” those that import testing libraries [18]. The combination of
these three ways of looking for tests allows step “discover” to detect tests from all JUnit
versions, including tests that may not be trivially found (e.g., located in directories other
than a build system’s default or generated by the build process).

Step analyze parses all discovered tests with JavaParser,{35} and processes the resulting
abstract syntax tree and typing information to measure the characteristics of exception tests
that we mention in Section 4.3.3. JavaParser’s rich information—augmented with the de-
pendencies collected by the build step— supports a fine-grained analysis of testing patterns

4The restriction to JUnit is justified by its popularity: we found a mere 6 projects out of 2672 with tests
written exclusively for the TestNG framework.

5We also ascertained that the patterns identified in Section 4.2.2 cover most of the exception tests: for exam-
ple, we found only 5 projects with exception tests using library catch-exception{33}, which is not covered by
the patterns.

72 How Java Programmers Test Exception Behavior

and exception types. Among other things, we distinguish between usages of assertThat
from various testing libraries (JUnit, Hamcrest, AssertJ, and Truth), can follow nested calls
in test methods, and can often determine whether exception classes from external libraries
are checked or unchecked.

Measured data

For every project, JUnitScrambler reports its build system, JUnit version, whether any tests
were found, and the list of classes with testing code. For every test (that is, testing method),
it measures its size in non-blank lines of code (LOC), and if it detected any exception testing
coding patterns (Section 4.2.2). For every exception test (that is, when a pattern was found),
it reports the detailed structure of the pattern, whether the test asserts on an exception
message or cause, and the fully-qualified exception static types of the exceptions mentioned
in the test (which determine their origin and kind, see Section 4.2.1), and other contextual
information such as any messages in the assertions or code comments.

JUnitScrambler records the raw measured data in CSV format. We then imported the data
into R{36} and used it to perform the statistical analysis reported in Section 4.4.

Qualitative analysis

A “Closer Look” section complements the quantitative analysis with qualitative findings about
each research question, which we obtained by systematically inspecting the top-10 projects
with the “most conspicuous” characteristics relevant to the question. For example, RQ1’s
closer look inspects projects with “the largest number of exception tests” and with “few
exception tests”.

4.4 Results

Before we delve into the details of exception testing, let’s overview some overall character-
istics of the projects we considered. Table 4.2 summarizes the main data.

Table 4.2. The number # and percentage % of ALL analyzed projects that use each BUILD SYSTEM.
Percentages do not add up to 100% because a few projects use multiple build systems.

BUILD SYSTEM

ALL MAVEN GRADLE ANT NA

1 157 521 464 39 172
% 100.0 45.0 40.1 3.4 14.9

Overall, we analyzed 1 157 projects with tests. Most projects use one of three build
systems: Maven is the most widely used (45.0% of projects), followed by Gradle (40.1% of
projects), whereas only 3.4% of projects use Ant, and 14.9% of projects use no build system
that we could detect (NA in Table 4.2).

4.4 Results 73

1e+01

1e+03

1e+05

projects

co

m
m

its

●

1

10

100

1000

projects

co

nt
rib

ut
or

s

●

●

●●

●

●
●
●

●

●●
●

●
●
●
●
●●

●●●

●

●
●●●
●

●
●
●●●

2005

2010

2015

2020

projects

fir
st

 c
om

m
it

da
te

Figure 4.2. Violin plots of the analyzed projects’ total number of commits, number of contributors,
and initial commit date of their test code. Vertical scale is logarithmic in first two plots.

Figure 4.2 displays other overall characteristics of the test code among the 1 157 projects
that we analyzed. The total number of commits varies widely among projects: its median is
91, its mean is 1094, and its maximum 55 090 commits. The number of contributors also
varies widely: its median is 5, its mean is 22, and its maximum is 663 contributors. The
age of the test code, measured as the date of test code’s first commit, is less spread out: its
median is 2015-12-12, close to its mean 2015-07-08; nonetheless there are several outlier
older projects: the oldest commit date is more than 17 years ago (2003-09-26).

4.4.1 RQ1: How often is exception behavior tested?

RQ1 asks how much exception testing is usually carried out in Java projects. As shown in
Table 4.3, 66.2% of the projects with some tests also include exception tests. The split between
exception and regular tests is, however, not even: only 13.2% of all tests target exceptions—
making up 14.6% of all lines of testing code. On the other hand, there is a strong positive
correlation (Kendall’s τ= 0.7) between number of tests and number of exception tests that
each project includes, which indicates that exception tests are an integral part of the test-
writing effort in the analyzed projects.

Table 4.3. Number of PROJECTS with some tests, number of testing METHODS and CLASSES, total
∑

LOC

and per-method mean LOC size of test methods in lines of code. The first row comprises ALL TESTS,
the second only EXCEPTION TESTS, and the third the latter as a percentage of the former.

#PROJECTS #METHODS #CLASSES
∑

LOC LOC

ALL TESTS 1157 1 123846 171 011 14 023852 13
EXCEPTION TESTS 766 148 063 41537 2046 930 14
% EXCEPTION TESTS/ALL 66.2 13.2 24.3 14.6 110.3

The violin plots in Figure 4.3a provide more information about the effort that is usually
devoted to writing exception tests. By comparing the two shapes in the leftmost plot, we
notice that the distribution of number of exception tests is wider around the median. Thus,
there is less inter-project variability in the number of exception tests compared to all tests.

74 How Java Programmers Test Exception Behavior

1e+01

1e+03

1e+05

all exceptional
tests

te

st
s

●●●●●1e+00

1e+02

1e+04

1e+06

all exceptional
tests

to
ta

l L
O

C

●●

●

●

●

●
●
●

●

●●●
●●

●●●
●

●
●

●

●●

●
●
●●●●

●●

●●
●

●●●●●●●

●

●●

●
●

●●●●

●

●●

●
●
●

●

●

●●

3

10

30

100

all exceptional
tests

m
ed

ia
n

LO
C

(a) Analyzed projects’ total number of tests, total size of all tests, and median size of a test in lines of code. Each
plot shows data about all tests next to data about exception tests.

●●●

●●●●●●●●●●●●●

●

●●●●

●

●●●●●

●●●●●●●
●●
●●●●●●●●●●
●●
●●●●●●●
●
●
●●●●●
●●
●●
●●●
●●●●●●
●
●●

●
●●
●●●●
●●
●●●●

●
●
●●●●●●
●
●
●
●●●●

●

●
●
●
●
●●
●●
●
●●
●●●●
●
●
●●●
●

●
●●
●
●●
●●●●

●
●
●

●

●●●
●

●
●
●
●●●
●
●●●
●●
●
●●●
●
●●●●●
●
●●●
●

●

●●●●●●
●●

●

●

●

●
●●●

●

●

●
●●●●●
●●●●●●●●●●
●●●
●
●●

●

●
●●●
●●●●
●●
●●●
●
●●

●

●

●

●●●●●●●●●●●
●●●
●

●●●●

●●
●●●
●
●●
●●●
●
●●●●●
●
●
●
●●●
●●●●●
●●●
●
●●
●

●

●
●●
●
●●●
●
●●

●●●●

●

●●
●●
●●●●●●
●●●
●
●
●●
●●
●●●
●
●

●

●
●
●
●
●

●●●
●
●
●
●●●
●●

●

●

●●●
●
●●●
●●
●
●
●●●
●●
●●
●
●●●
●

●

●
●
●●●●●●●●●●●●●●

●●

●●●●●●●●●●
●
●●●●●●●●

●

●

●

●●●●●

●

●●●●●
●●●●●

●

●●●●●●●●●●●●●

●
●●

●●●●●●●●●●●●●
●●●●●●●●●●

●

●
●●
●●●●

●
●●●●●●●●

●●

●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●

●●●●

●●●●●●●●●●●●●●●●●

●

●●
●
●

●●●

●●●

●
●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●
●●

●●●

●●●
●●●
●●●●●●●●●●●●●●
●●●●●●

●

●

●

●
●●●●
●

●
●●●
●●●●●●●
●
●●
●
●●
●●●
●●●●●●

●
●
●●●●●
●●
●
●●
●●●
●
●

●●●●●●
●●●

●●

●

●●●●●●●●●●●●●

●

●●
●●●●●●●●●●●●

●

●●●●●

●

●

●●

●

●

●●●●●●●●●

●

●●

●

●●●●●●●●

●
●
●●●
●
●●●●●●●●●
●
●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●
●

●

●
●●

●

●

●

●
●

●●●●

●

●

●

●

●●

●

●

●●

●

●●●

●●

●●

●
●
●

●●●

●

●

●

●

●
●

●

●

●●●

●

●●●

●●●
●

●

●

●●

●
●●

●

●

●

●
●
●

●●

●●
●

●

●

●

●●
●
●●

●●●

●

●

●

●

●●●●

●

●

●●●

●●
●●
●

●

●

●

●
●
●
●

●

●

●

●●

●

●

●●

●

●●●●

●

●●

●●

●

●

●

●●●
●

●

●
●●●

●

●
●
●
●

●

●
●

●●

●
●●

●●

●

●●

●
●

●

●●

●

●

●●

●●

●

●●●

●●

●●●●●

●●●

●●●●

●

●●●

●●

●●●●

●●●

●

●

●●●●●
●
●

●●

●●●●●●●●
●

●

●

●
●
●●●●

●●●

●●
●
●●●●●

●●●●●●
●
●●
●●

●●●

●●●
●

●●●●

●●

●

●

●●●

●

●●●●●

●

●●●●●

●●●

●●●

●

●●●

●●

●●●●●●

●●

●●●

●

●●●

●

●●●●●●●●●●●●●

●●
●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●

●

●●●●●●●

●

●●●●●

●

●●●●

●●●●
●●●●●●●●●●●●

●
●●
●●●●

●
●●●
●

●

●
●
●●●●

●

●

●
●

●

●

●●●
●

●

●

●●●
●●
●
●●

●●

●●●●●
●
●

●

●●●
●

●

●

●

●●

●

●
●

●

●●●

●

●●
●
●●●
●
●
●
●●

●
●●●

●

●

●●
●●●
●●

●
●●●●

●
●●●

●

●

●
●
●●●●
●●●
●
●

●

●●
●●
●●
●●
●
●●●●●●●●●●
●
●●●
●●●
●
●
●

●

●
●●
●●
●●
●●●
●
●●
●
●●●●●●●●●●●●●●●

●
●
●
●
●●

●●●●●●●●●●

●●

●●●●●●●●●●●●●

●

●

●●

●

●

●●

●●●●●
●
●
●
●
●
●●●●

●

●●

●●
●●●

●

●●●
●●

●

●
●●●

●

●●
●●

●

●
●
●●
●●
●●

●
●●●
●
●●●●●●●

●●
●

●
●

●●●●●●●●●

●
●
●

●●●

●●
●

●●●●●●●

●
●

●

●

●
●●●
●
●●●

●

●●

●●
●●●
●●●
●●

●
●●●●●●●

●

●●

●●

●

●

●●

●

●
●

●
●

●●●

●

●

●●●●●●

●

●

●
●
●
●●●●●●●●●●●●●

●●
●●

●

●●●
●●
●●●

●●
●●

●

●●

●
●●●●
●●
●
●
●
●●●
●●
●●●
●
●●
●

●●
●
●●
●

●●●
●●●
●
●
●
●●
●
●●●●
●
●
●
●
●
●

●

●

●
●●●
●
●
●
●
●
●
●●
●●●●●
●

●
●
●●●●
●●
●
●

●

●
●●

●

●●●
●●
●

●

●

●●

●●
●●
●
●

●
●
●●●

●
●
●
●
●

●●●●
●●
●
●●●

●●

●

●

●
●
●

●
●
●

●

●
●
●●

●

●
●●

●

●

●

●●●●

●

●●
●●●
●●●
●●
●
●
●●
●●●

●

●

●

●

●●
●●
●●
●
●●●
●●●
●
●●●●●
●
●
●

●

●
●

●

●●●●
●●
●●●
●
●

●

●
●●●

●

●
●
●
●●
●●●
●
●●●

●

●●

●●

●●

●

●●
●

●

●

●
●●
●●

●
●
●●●

●
●

●
●
●

●

●
●
●●
●●●●
●●
●
●●
●●

●●

●

●

●
●
●

●

●

●

●

●●●

●

●
●●●●●
●
●
●

●●●●●
●●●●●
●●●●

●●
●
●
●
●●●

●●●●●
●●
●●●
●
●●●●
●●●
●●●

●●
●

●
●●
●●●
●●

●
●
●

●
●

●

●
●

●

●

●

●

●●
●

●
●●●●●
●

●●
●
●
●

●●●
●
●●

●

●
●
●●
●
●

●

●
●●

●

●●

●●●●
●

●

●
●

●●

●
●

●●●

●

●
●
●●●

●
●
●

●

●●

●●

●●●
●
●

●●

●

●
●●
●●

●
●

●

●

●●

●●

●
●●
●●●●

●

●●
●
●
●●●

●●
●●

●

●●

●●
●●●

●

●●

●

●

●

●

●
●
●●

●●
●

●

●

●
●●

●●

●

●●

●●●●●

●

●
●●
●

●
●
●●
●●
●●
●
●
●●

●
●

●
●●

●

●●

●
●●
●
●

●

●
●●●

●
●
●
●
●

●

●
●
●
●
●
●●●●
●●
●
●●●

●●●●

●

●

●
●●●
●
●●
●●

●

●

●
●●
●●
●●
●
●
●

●
●

●●●●

●
●

●

●●●

●

●
●●

●●
●

●●●
●
●
●
●●●

●

●
●●●

●

●
●●●●

●●

●

●

●

●

●

●

●

●
●

●●

●●●
●
●

●

●
●●●●
●
●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●●●
●
●
●
●●●●●

●

●●●
●●●
●●
●
●

●●

●

●
●
●●●●●●
●●●●●
●●●
●
●●●

●
●
●
●●●●
●
●
●●●

●

●●●
●●
●
●●●
●
●●●
●●
●

●

●

●

●
●●●●●
●

●
●●
●
●●●●●●
●
●
●
●●●●

●
●

●

●
●●●
●●●●●

●●
●
●
●●●

●

●

●

●●

●
●
●

●●●●

●
●
●
●●
●

●●
●

●

●
●
●●
●●

●
●

●

●●

●
●
●

●

●●

●●●

●

●●

●
●
●●

●
●
●●
●

●

●●
●
●●

●
●●
●●

●

●●
●●●●●●●●●
●

●●
●

●●●

●

●

●●

●●

●

●●
●

●

●●

●●●●

●

●●●●●

●
●
●●
●●

●
●

●
●

●
●●●
●
●
●
●●●
●

●
●

●●
●
●
●
●●●●●

●

●●●●
●
●●
●
●●
●
●
●●●●
●●
●
●●●●●●●●●●

●
●●●●

●●

●
●
●●●●●●
●
●●

●

●●●●●
●
●
●
●●●●●●●●
●

●

●●

●

●
●●
●
●●
●●●●●

●

●

●
●
●
●●●●●

●

●

●

●
●●

●
●

●

●●

●

●●
●●

●

●
●●
●

●●
●●●

●

●

●
●
●
●●

●

●●●●●●
●●●●●
●

●

●●
●
●

●

●●
●
●●●
●●●●●
●●
●

●

●
●
●●

●●
●

●●●●●●●●●●
●●●●
●●●

●

●

●●

●

●
●
●

●●

●●●●●
●●●●

●●●
●●
●
●●

●

●
●
●●

●

●
●
●●●●●●●●●●●●
●●●●●

●

●

●

●

●●

●
●
●●●
●
●●
●●●●●●●
●
●●●
●●
●
●●●●●●●
●

●
●
●
●●●

●

●●●

●

●
●
●●

●●

●●
●

●
●●●●●●
●●
●●

●●

●●

●●●●
●●●●●●
●●●●●●

●
●●
●
●●●●●

●
●●

●●
●●
●●●●●●●●●●●●
●
●●

●●

●

●

●

●
●
●●●●●
●
●

●●●●●●●●●●●●●●

●

●

●

●●
●
●

●●●●

●

●
●●●●

●

●●●
●
●
●
●●
●●
●
●●●
●●
●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●●

●

●●

●

●

●
●

●
●
●

●
●●
●

●

●●
●●
●●

●
●

●●

●●

●
●

●
●●
●●
●●●●●●●●●●●
●

●

●
●
●
●

●

●●

●

●●

●

●

●

●●●

●
●

●●●

●●

●

●

●

●●
●●
●

●
●

●
●

●●

●

●●●
●●●●●
●

●

●

●

●
●●●
●
●●●●●

●

●
●
●
●

●
●●●
●
●
●●
●●
●
●●●●●●●●●
●●
●●
●●●

●
●

●
●●
●
●

●
●

●

●
●
●
●●●
●●●●
●

●

●
●

●●

●

●●●

●
●●●●
●
●
●

●●
●

●●●

●

●●●●●●
●●●●

●

●
●●

●
●●
●
●
●
●●

●
●●

●
●●
●●●

●

●
●

●●●

●
●
●
●
●
●●
●●
●●
●●

●

●●
●●
●●
●●●●
●
●●●●
●
●●●●●●●●●
●●●●

●
●
●
●
●●●●●●●●
●●●●●●●●
●●●●●
●
●●

●

●
●●●●●●●●
●
●●●●●
●
●●●●●
●●
●●●●
●
●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●

●

●●●●

●

●

●
●

●●
●
●●●●
●

●
●●●●●●
●
●
●●●

●

●●●
●
●
●●●●

●

●●
●
●●

●

●●
●

●
●●●
●
●●

●

●●●●
●●●
●●●
●

●
●
●
●●●
●●●
●●

●
●●
●
●●
●●●●
●●
●
●
●●●●
●
●

●
●●●●●●●

●●

●●●●●
●
●
●

●
●
●
●
●

●

●

●

●●

●
●
●●●

●

●●
●
●

●

●
●

●
●
●●
●●●
●●
●

●

●●
●
●●●●
●●
●
●●●●●●
●●●
●●
●
●●●●

●●●●●
●●
●●●
●
●●●●
●●
●●●●●●●●●●
●
●
●●●●●
●
●

●
●

●

●●

●●
●
●

●●
●●

●●●●●●●
●
●●●●●●●●●

●●
●
●●
●
●●●●

●
●
●
●
●●
●
●
●

●
●●●●●●
●

●
●
●

●

●●●
●●●
●●●●●●●●●●●●●●
●
●●●
●●
●

●●●●●●●

●

●●

●

●

●●

●

●●●●●●

●

●

●

●

●

●●●●●●●

●

●

●
●
●●●●●●
●
●

●

●

●

●●
●●

●

●

●●●●
●

●●
●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●
●●

●

●

●●

●

●●

●
●
●

●

●●

●

●●●●

●

●

●●
●●

●

●●
●

●

●●

●
●●
●●
●

●

●

●

●
●

●

●
●
●

●●●

●
●

●
●●●
●

●

●
●●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●●

●●●●

●

●

●
●

●
●●●●
●●

●●●

●●
●

●●
●

●

●

●

●●
●

●

●

●●
●
●●

●
●●
●
●
●●

●

●●

●
●
●●

●

●

●●

●●

●●

●●●

●●

●
●●●

●●

●●

●●●
●
●

●

●

●●●
●
●
●

●
●

●

●

●
●

●●●
●

●●

●
●●●●●

●
●
●

●●●
●
●
●
●●

●
●
●●

●

●●●

●

●●

●●

●

●

●●

●

●

●●●●●●●●

●●●●●●●●●●●●

●●●●

●●
●

●
●
●

●

●●
●●●●

●●●●

●●●●●●●

●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●

●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●
●●●●●●●
●
●
●●●

●
●
●

●

●
●

●

●
●●
●

●●

●

●●
●
●
●●
●
●
●●●
●

●

●

●

●
●●●●
●
●

●●●

●●●

●

●

●

●

●●●●●●●●●●●●●●●●●
●

●●●●●
●●●
●●●●
●●●●●●●●●●●

●

●●

●

●●●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●●

●
●●
●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●●

●

●

●●

●●●

●●

●●

●
●●

●

●

●●●

●●●

●●●

●
●●●●

●●

●

●

●●●

●●●●●●●●●

●

●
●●
●●

●

●

●
●

●
●

●●●

●●

●
●●
●
●●
●●●
●
●●●
●

●

●●
●
●●●●
●
●●●
●
●
●
●●●●
●●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●

●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●

●
●●●●

●

●●

●●

●●

●

●

●
●
●

●

●
●●

●●
●

●●

●

●●●●

●●●●●●

●

●●

●

●●●●

●●●

●●●●

●
●
●●●●●●●●●●●●●●
●
●

●●●

●

●

●

●

●●●●●●●●

●●●●●●●
●
●●●●●●●●
●
●
●
●
●●●●●●
●
●
●
●●●●
●●●●
●●
●
●
●

●

●
●●
●

●

●●●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●

●

●●●●●●

●

●
●●

●●●

●
●●●●●●●●●●●●●●●●●

10

100

1000

TRYCATCH TEST RULE ASSERT GENERIC
pattern

te
st

 L
O

C

(b) Violin plot of the analyzed exception tests’ size in LOC grouped by the patterns they use.

Figure 4.3. Violin plots of: (4.3a) the projects’ size measures; (4.3b) patterns used in their tests.
Vertical scales are logarithmic.

A similar trend exists for the total size (in lines of code) of all tests compared to exception
tests—even though the mean size of any exception test is 110.3% that of any test. Indeed,
there is a small but definite positive correlation (Kendall’s τ = 0.1) between a project’s
number of tests and their median size, but a negligible correlation (τ = −0.02) between
a project’s number of exception tests and their median size. Thus, exception tests tend to
be more homogeneous in size across projects, indicating that writing exception tests is an
activity that receives significant effort but is somewhat more “standardized” than writing
tests in general.

Two thirds of the projects with tests also include exception tests; the latter vary less in
number and size.

RQ1: A Closer Look at Some Projects

We observed that projects with the largest number of tests typically also have the largest num-
ber of exception tests. In particular, the project with the most tests (Eclipse Collections{37}

4.4 Results 75

with over 47 283 tests) is also the project with the most exception tests (7839 tests). To
produce such a huge number of tests the project uses code generation{38} which can automat-
ically produce variants of tests for classes that have a similar behavior (e.g., they implement
the same interface).

Effective large-scale testing (including exception testing) requires clear guidelines and
effective practices. Project Apache Geode, for example, comprises tests in 5 different cate-
gories{39} (including unit, integration, and acceptance) and explicitly recommends how to
catch exceptions in unit tests;{40} this might explain why it ranks 4th and 5th among our
projects with the largest number of tests and exception tests. More generally, projects with
the largest number of (exception) tests usually recommend providing unit tests when open-
ing an issue or contributing code, and actively try to include tests with high code coverage
(for example, project Hazelcast’s{41} tests cover over 85% of all project code according to
SonarCloud;{42} the project ranks 3rd and 8th among our projects with the largest number
of tests and exception tests).

At the opposite end of the spectrum, projects with few (exception) tests tend to be
younger, less established, and provide simpler, more limited functionality. Project Rest Coun-
tries,{43} for instance, offers a REST API exporting data about worldwide countries (e.g., their
currency) to add internationalization support to web applications. Tutorials and extensive
examples are another group of projects with a limited number of tests and exception tests.
It is reasonable to expect that those projects that will undergo further development will also
considerably extend their test suites as they mature; citing project Processing’s documenta-
tion: “someday” they will have “hundreds of unit tests [. . .] but not today”.{44}

4.4.2 RQ2: What kind of exception behavior is tested?

RQ2 asks what kind of exception behavior is most frequently tested in Java projects. The
characteristics of the exception classes in exception tests are a proxy for such behavior.

Categorization of exceptions

We classified the exception classes that we found in our projects according to their origin,
kind, and usage (see Section 4.2). The classifications into origin and kind are objective and
thus automatic. In contrast, an exception class’s intended usage is described in the class’s
documentation and other artifacts where it features; therefore, it is somewhat informal and
potentially subjective.

To manage this threat, we proceeded as customary in studies of Java exceptions classes [79,
95, 123, 151] and manually classified the usage of only standard Java exceptions—precisely,
the same list of Hassan et al. [79]. Furthermore, we only considered categories failure and
fault, since usage category return is most of the times sporadic and context-dependent—rather
than being an exception class’s intrinsic characteristic.

76 How Java Programmers Test Exception Behavior

Table 4.4. Each column lists the percentage of EXCEPTIONS, TESTS, and PROJECTS that feature ex-
ception classes with certain characteristics: defined in Java’s standard libraries, in a different external

library, or locally to the project; checked or unchecked; used to signal failure or fault.

ORIGIN KIND USAGE

Java external local checked unchecked failure fault

% EXCEPTIONS 6 12 82 40 60 74 25
% TESTS 76 2 26 36 70 47 57
% PROJECTS 95 32 59 81 90 89 83

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●
●
●

●
●●

●●

●

●●

●

●

●●

●

●●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●
●
●

●

●

●

●

●

●

●

●

●●

●●●

●

●●●

●

●

●
●

●
●

●

●
●

●
●

●●

●
●●

●

●●

●
●●

●

●

●
●

●

●

●

●

●

●●●
●
●

●●

●

●

●

●
●
●
●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●
●
●

●

●

●

●
●●

●

●
●●

1

10

100

1000

10000

external Java local
origin

te

st
s

●

●●

1

10

100

1000

10000

checked unchecked
kind

te

st
s

●●●

●
●●

1

10

100

1000

10000

failure fault
usage

te

st
s

(a) Number of tests targeting various exception classes

●
●

●
●● ●●

●

●

●

●

●

● ●

●

●●

●

●

3

10

30

100

external Java local
origin

m
ed

ia
n

LO
C ●●

●●
●●

●
●

●

●

●
●

●●

●
●
●●
●

3

10

30

100

checked unchecked
kind

m
ed

ia
n

LO
C ●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

3

10

30

100

failure fault
usage

m
ed

ia
n

LO
C

(b) Median size in LOC of tests targeting various exception classes

Figure 4.4. Violin plots of the analyzed projects’ total number of tests and median size of a test. Each
plot groups data according to various characteristics of the exceptions featured in tests: their origin
(Java’s standard libraries, external, or local to the project), their kind (checked or unchecked), and
their usage (signaling failure or fault). Vertical scales are logarithmic.

4.4 Results 77

The top data row in Table 4.4 summarizes the result of our classification. Out of 5 152
exception classes found in our tests: 1. 82% are project-local; 6% are Java standard exceptions,
and the remaining 12% are from external dependencies; 2. 40% are checked types, and the
remaining 60% are unchecked. Finally, according to our classification of their intended usage,
74% of all Java exceptions are for failures and 25% are for faults.6

Origin

Even though Java standard exceptions are only 6% of all tested exception classes, they are
by far the most widely used: 76% of all exception tests target an exception of origin Java,
and 95% of all projects include at least one such test.7 This indicates that the familiar Java
exception classes are tested extensively.

It may also suggest that the bulk of the exception behavior of most projects is not very
project-specific—because the project defines no exception classes or tests them indiscrim-
inately using abstract Java exception types. Still, 59% of all projects also test for locally
defined exceptions; and about 32% of all projects also test for exceptions from external
libraries. However, external exceptions feature in only 2% of the tests—and, indeed, the dis-
tribution of number of tests for each origin per project in Figure 4.4a says that most projects
have no more than 10 tests targeting external exceptions. This suggests that the exception
behavior of external libraries is seldom tested specifically—possibly because libraries mainly
expose standard exceptions, or developers prefer testing abstract Java exception types when
dealing with third-party code.

Kind

According to Java’s official documentation,{45} checked exceptions should be used when the
“client can reasonably be expected to recover from [the] exception”. This guideline is some-
what informal, and as a result the role of checked vs. unchecked exceptions has long been a
controversial point [37]. We found that projects test for unchecked exceptions (90% of all
projects, and 70% of all tests) more frequently than for checked exceptions, but the latter
still feature prominently—and nearly 72% of all projects include tests involving both checked
and unchecked exceptions (not shown in Table 4.4). The minority of projects that only test
for checked (10%) or unchecked (19%) do an overall limited amount of exception testing
targeting at most a dozen exception classes. Since the compiler checks that programs include
handling code for checked exceptions, less testing might be needed for checked exceptions
thanks to these static checks. Nonetheless, we found no clear support for this expectation:
distributions of the number of tests per project are qualitatively similar for checked and
unchecked exceptions (Figure 4.4a); and exception tests targeting checked exceptions are
usually considerably larger than those targeting unchecked exceptions (Figure 4.4b). In all,

6The missing 1% is a rounding error due to class java.io.EOFException that we consider of usage return and
we discuss in Section 4.2 and below.

7These percentages don’t add up to 100% because a test or project may target multiple exceptions of different
origins.

78 How Java Programmers Test Exception Behavior

the checked vs. unchecked debate is far from being settled, and in practice it seems program-
mers use any kind of exception classes without rigid rules.

Usage

Even though we classified 3 out of 4 Java exception classes as “usage failure”, projects test for
both kinds of exception behavior—failure and fault—about as frequently, as confirmed by the
qualitatively similar distributions in Figure 4.4a. However, the median method testing for
exceptions signaling failure is nearly twice as big as one testing for fault (16 vs. 9 LOC). A
fault indicates a bug in the program—which should never occur—whereas a failure is often
due to a transient condition that may be recovered from. Therefore, a test that finds a fault
might not have much to do besides signaling it to the programmer for debugging, and hence
it is shorter than a test that finds a failure and may try to see if the same calls in different
program states lead to different behavior.

Java exception java.io.EOFException is mainly used to “signal end of stream”; how-
ever, “many other input operations return a special value on end of stream rather than
throwing an exception”,{46} which makes EOFException a class used primarily to pass an
additional return value rather than to signal truly exception behavior. We inspected the tests
targeting this exception in projects Apache Hadoop{47} and ExoPlayer{48} (two large projects
among those that test for this exception) and confirmed that EOFException can be thrown
as part of a program’s normal operation: the tests of both{49},{50} expect EOFException to
be thrown.

Java standard exception classes are the most frequently tested; unchecked exceptions are
tested more frequently than checked ones; exceptions signaling failure and fault are tested

about as frequently.

RQ2: A Closer Look at Some Projects

Kind

Larger projects with many tests invariably target exceptions of both kinds. Project Spring
Framework{51}—a widely-used Java framework—is an interesting example because it is de-
signed so that it only throws unchecked exceptions.{52} Nonetheless, 18% of its 2 460 excep-
tion tests target 34 checked exception classes—including several local to the project. This
confirms that it is practically impossible to stick to only one kind of exceptions, since the
roles of checked and unchecked exceptions are irredeemably intermingled in Java.

Errors (subtypes of java.lang.Error) are a distinct category of unchecked exceptions
reserved for “serious problems that a reasonable application should not try to catch”{53}

such as OutOfMemoryError. Projects that primarily test for errors frequently deal with low-
level features of system programming, such as virtual machines (Oracle GraalVM{54} and
Eclipse OpenJ9{55}), core language features (Apache Commons Lang,{56} Google Guava,{57}

and Apache Flink{58}) and language manipulation and translation (Google J2ObjC{59}). Deal-
ing with low-level features, these projects’ tests handle errors to check robustness in different

4.4 Results 79

conditions of the runtime environment they execute in. A clear example is a test in Apache
Flink{60} that tests the behavior of integer overflows but also includes an empty catch block
for OutOfMemoryError with the comment “this may indeed happen in small test setups. We
tolerate this”.

Specific vs. generic exception

Exception-handling code should be exception-class specific,{61} whereas catch block with
exception types high up in the inheritance hierarchy (such as Exception or even Throwable)
are considered an anti-pattern. Since abstract types Exception, Throwable, and RuntimeException

are among those featuring most frequently in exception tests (respectively, 2nd, 6th, and
10th), this anti-pattern may also occur in testing code. By manual analysis of a few larger
projects, we found at least a couple of instances. Ten out of 12 of project Saturn’s{62} test
classes deal exclusively with type Exception; on closer inspection, these are integration tests,
which need not differentiate between specific exception types (a task for unit tests) but just
detect thrown exceptions [83]. Another instance is project Apache Flink, which includes a
very long method{63} with 150 try/catch blocks all for type Exception. In this idiom, a spe-
cific exception type Specific is checked with an assertion that e instanceof Specific in
the catch block.

Static analysis and tests

A key usage of exceptions is signaling runtime faults; however, some faults can also be de-
tected statically by source-code analysis. Take a relatively basic but widespread bug: access-
ing a null reference. Java uses exception NullPointerException to signal “attempts to use
null in a case where an object is required”;{64} several static analyzers, such as Infer [26]
and lgtm,{65} automatically detect such faults. We looked at 10 of the projects with the
most tests that also use lgtm to detect and fix errors in their code base. All of them still
include exception tests targeting NullPointerException, but the tests sometimes cover
corner cases that are hard to catch using static analysis, or where using null is accept-
able or even expected [37]. Project Apache ActiveMQ’s{66} iterators, for example, throw a
NullPointerException in some conditions when the iterator is no longer valid; in this sce-
nario,{67} the exception doesn’t signal a fault but rather returns information to the caller.
Some parts{68} of Apache Geode also use NullPointerException for inter-method com-
munication. A couple of exception tests{69} in Hibernate ORM{70} deal with using null to
initialize object structures with circular references—which is notoriously tricky to analyze
statically [141, 178]. In Apache Kafka,{71} a test{72} for NullPointerException captures an
error that occurs when incorrectly nesting serializers—another scenario that is likely to be
off-limits for common static analysis algorithms.

4.4.3 RQ3: What coding patterns are used for exception testing?

RQ3 analyzes the coding patterns (Section 4.2.2) that are used in exception tests, and relates
them to other project features.

80 How Java Programmers Test Exception Behavior

Table 4.5. Each column lists the percentage of exception TESTS and PROJECTS that use any of the 5
coding patterns try/catch, test, rule, assert, and generic (see Section 4.2.2).

try/catch test rule assert generic

% TESTS 42 32 5 9 19
% PROJECTS 83 63 24 13 39

Table 4.5 shows that the most widely used pattern is try/catch, which features in 83% of all
projects and 42% of all tests, followed by pattern test. In contrast, patterns rule and assert are
the least frequently used—by 24% and 13% of all projects and in 5% and 9% of exception
tests. Pattern rule’s atypical syntax (see Section 4.2.2) may explain why it’s not widely used.8

8Even one of the developers who built this mechanism into JUnit admits that he rarely uses it.{73}

4.4 Results 81

Ta
bl

e
4.

6.
Fo

r
ea

ch
co

m
bi

na
ti

on
of

pa
tt

er
ns

(t
ho

se
m

ar
ke

d
by

○
in

ea
ch

co
lu

m
n)

,
th

e
to

p
ro

w
re

po
rt

s
th

e
pe

rc
en

ta
ge

of
al

l
pr

oj
ec

ts
w

ho
se

ex
ce

pt
io

n
te

st
s

us
e

ex
cl

us
iv

el
y

th
at

co
m

bi
na

ti
on

.
C

om
bi

na
ti

on
s

no
t

sh
ow

n
ne

ve
r

oc
cu

rr
ed

am
on

g
th

e
pr

oj
ec

ts
.

%
18

.6
17

.4
10

.8
10

.7
9.

8
7.

0
5.

9
3.

4
2.

0
2.

0
1.

6
1.

5
1.

3
1.

2
1.

2
1.

2
1.

1
0.

8
0.

7
0.

4
0.

4
0.

4
0.

3
0.

1
0.

1
0.

1
0.

1

T
R

Y
/C

AT
C

H
○

○
○

○␣
○

○
○

○
○

○
○

○
○

○␣
○␣

○␣
○␣

○
○␣

○
○␣

○␣
○␣

○
○␣

○
○␣

T
E

S
T

○␣
○

○
○

○
○␣

○
○␣

○␣
○

○
○

○␣
○␣

○
○

○␣
○␣

○␣
○

○
○␣

○
○␣

○␣
○␣

○
R

U
LE

○␣
○␣

○␣
○␣

○
○␣

○
○␣

○␣
○

○␣
○␣

○
○

○
○␣

○␣
○

○␣
○

○
○␣

○
○

○
○

○
A

S
S

E
R

T
○␣

○␣
○␣

○␣
○␣

○␣
○␣

○
○

○
○

○
○␣

○␣
○␣

○␣
○␣

○␣
○

○
○␣

○
○

○
○␣

○
○

G
E

N
E

R
IC

○␣
○␣

○
○␣

○
○

○␣
○

○␣
○

○␣
○

○␣
○␣

○␣
○

○
○

○␣
○␣

○
○

○␣
○␣

○
○

○

82 How Java Programmers Test Exception Behavior

Multiple patterns

The percentages in every row of Table 4.5 add up to more than 100%, because any one
project or test may use more than one pattern. Mixing multiple patterns in the same test is
not common: 94% of all tests stick to a single pattern; the remaining 6% typically combine
patterns try/catch or assert with assertions using generic that look for more specific exception
types. A handful of tests combine three patterns, but these are outliers that make up only
0.1% of all tests. In contrast, it is common that a project includes tests using different patterns
(see Table 4.6), even though only 2% of projects include some tests for every pattern, and a
substantial number of projects use a single pattern: 19% of projects only use pattern try/catch

and 11% of projects only use pattern test.
To understand which characteristics of a project are associated with using more or fewer

patterns, we fitted a Poisson9 regression model using a project’s number of different patterns
as outcome variable, and the number of contributors, the number of tests,10 and the testing
code’s age (measured by its earliest commit date) as predictors. The estimated slope coeffi-
cients for number of contributors and tests are positive with 95% probability; hence projects
with more contributors and tests also tend to use more exception testing patterns.

Patterns and size

Figure 4.3b pictures the distribution of size (in LOC) of exception tests grouped according
the patterns they use. It confirms the intuition that some patterns lead to more concise code
than others. Pattern test is by far the most concise: tests using it are on average 6 lines,
and their distribution is wider around and below the mean. Tests with pattern try/catch, in
contrast, are on average 33 lines, and their distribution spreads over a wide range of lengths
with many outliers. Pattern try/catch is the most flexible, doesn’t depend on any external
library, and is used in combination with other patterns; a large spread in test size is thus not
surprising. Patterns assert and generic are also quite flexible, which explains the outlier tests
that reach large sizes; on the other hand, their “natural” usage leads to concise tests (on
average, around 12–13 lines long) which make up the bulk of the distribution.

To understand which characteristics of a test are associated with its size, we fitted a
negative binomial11 regression model using a test’s LOC size as outcome variable, and, as
predictors, the patterns it uses, the origin and kind of the exception classes it features (see
Section 4.2.1), and whether it includes assertions on the message and cause of any exceptions;
to control for overall project size, we also included the total size of the project’s tests as a
predictor. The results (see Table 4.7) indicate that all predictors are strongly associated
with a test’s size. The strongest effect is that of patterns: tests using pattern try/catch are the
largest; those using patterns rule, assert, and generic are 36%, 39%, and 40% the size; and
those with pattern test are the smallest at 18% the size. The association between size and
the exceptions’ origin is clear but less prominent: tests featuring Java standard exceptions

9Suitable for “counting” outcome variables [134].
10Using all tests or only exception tests lead to similar conclusions.
11A negative binomial generalizes a Poisson for outcome variables that are overdispersed [134], like test size

in our case (µ= 24≪ 1751= σ2).

4.4 Results 83

Table 4.7. Regression estimates of each characteristic’s contribution to a test’s size. More precisely,
each number is the exponential of the estimated slope coefficient of the corresponding predictor’s
variable in a negative binomial regression with outcome test size. The exponential is taken to reverse
the logarithmic link function, so that the shown estimates are on the outcome scale. All predictor
variables except LOC (total size of test code in the project) are dummy selector variables (ℓ−1 variables
for a factor with ℓ possible values; the missing value thus corresponds implicitly to an estimated
coefficient of e0 = 1). All estimates are significant with 0.99 probability.

PATTERN ORIGIN KIND INSPECTING

TEST RULE ASSERT GENERIC JAVA LOCAL UNCHECKED MSG CAUSE LOC

0.18 0.36 0.39 0.40 0.92 1.04 0.99 0.73 0.83 1.06

are 92% the size of those featuring external exceptions, whereas those featuring project-
local exceptions are 104% the latter’s size. Somewhat counterintuitively, tests inspecting
exception messages or causes (columns MSG and CAUSE in Table 4.7) tend to be smaller than
those not inspecting them. There is a positive association between a test suite’s overall size
(controlling for a confounding effect) and each exception test’s average size but the effect is
small in comparison with the others. Finally, tests targeting unchecked exceptions tend to
be smaller than tests targeting checked exceptions, but the effect is small (1% = 100− 99
reduction in size). In all, the patterns capture different ways in which developers write tests
trading off conciseness, expressiveness, and flexibility.

Patterns and checked/unchecked

Projects that only follow pattern try/catch often disproportionately use checked exception classes:
on average, a project in this group includes 1.5 as many tests for checked exceptions than for
unchecked, and 29% of these projects only test for checked exceptions; in contrast, projects
that do not only use pattern try/catch include, on average, 0.4 fewer tests for checked exception
than for unchecked, and just 4% of them only test for checked exceptions. Since checked
exceptions must be either caught or explicitly propagated, a try/catch block is often necessary
in exception tests targeting checked exception, which may make using other, more concise
patterns redundant.

Projects that exclusively use pattern test in exception tests show the reverse tendency,
namely they primarily test for unchecked exceptions: 78% of these projects only test for
unchecked exceptions; in contrast, just 14% of projects that do not only use pattern test only
test for unchecked exceptions. Pattern test is a natural choice to write concise exception tests;
indeed, exception tests in projects using only this pattern are, on average, half the size of
those in other projects.

Exception tests using try/catch blocks are the most common and longest; those using
@Test(expected) are the second most common and shortest.

84 How Java Programmers Test Exception Behavior

RQ3: A Closer Look at Some Projects

The largest projects that exclusively use pattern try/catch tend to be long-standing projects
whose main development took place in the past and currently undergo only standard main-
tenance. Project Joda-Time,{74} for example, was a date-and-time library often used with
older Java versions, but it is no longer maintained since its functionalities were made avail-
able in Java 8’s package java.time. The project uses JUnit 3.8.2, which requires Java’s
try/catch to define exception tests.

Among the largest projects that exclusively use pattern test, Algorithms{75} (a collection of
standard algorithms implementations) is a clear example of tests that privilege conciseness:
89% of its exception tests consist of a single call in the body, and no exception test’s body is
longer than 3 lines.

Project SonarQube{76}—a popular static analyzer for Java—is one of the largest projects
among those that extensively use pattern rule, which features in nearly 70% of its exception
tests. We found that this pattern coexists with others—most frequently, with generic assertions
using AssertJ—to the extent that the same developer may write, on the same day,{77},{78} tests
using both patterns: rule for simpler tests that mainly check that a certain exception is thrown;
and AssertJ fluent assertions for “deeper” tests that inspect complex exception objects.

Project Apache Beam{79}—a framework for data-processing tasks—is among the largest
projects that use all 5 exception test patterns. It is a clear example of how large projects with
many contributors (Beam counts 390 contributors to its test code) naturally end up with a
variety of different styles of exception testing code. Beam’s class DataFlowRunnerTest’s Git
history{80} is a microcosm of this dynamic. The class includes tests using patterns try/catch, rule,
assert, and generic; different contributors (among the 19 that worked on this class) introduced
tests using only one of these different patterns. In other words, each developer’s preferred
practice coexists with the others’.

The development history of Beam’s DataFlowRunnerTest also shines light on the inter-
play between availability of JUnit features and how tests are written. When, in late 2014,
part of this project was first written, developers added both tests using try/catch and using rule.
However, those using rule didn’t take full advantage of the pattern’s expressive power until
two years later, when developers added assertions on the exceptions’ messages. The project
formally switched to JUnit 4.13—supporting pattern assert—at the end of 2018; however,
tests using the new pattern were added only months later, after a period during which main-
tainers were aware of the new pattern but also stuck to pattern rule for the time being.{81}

Pattern assert has been available for just a few years with recent versions of JUnit (see Sec-
tion 4.2.2). The commit history of the largest projects that primarily use this pattern clearly
show when the migration of older tests to use this new pattern took place. Project Roaring-
Bitmap{82} (providing compressed bitsets) is the largest project using only pattern assert; in a
large pull request that took place in April 2020,{83} the project migrated from JUnit 4 to 5,
and updated all exception tests to use pattern assert. Maintainers of project Neo4j{84} (a pop-
ular graph database) planned the migration to JUnit 5 for over two years;{85} the migration
is still ongoing,{86} but already 80% of the project’s 1671 exception tests use pattern assert.

Assertion frameworks such as AssertJ have supported fluent assertions, including for
exception behavior, for years before JUnit 5 made them more widely available. Several

4.5 Limitations and Threats to Validity 85

larger projects that predominantly use pattern generic for exception tests started to use this
pattern early on and often kept using it over JUnit 5’s pattern assert even after migrating to
the latest JUnit major version. Project Spring Boot Admin,{87} for example, only uses pattern
generic, and chose to rewrite pattern test with AssertJ assertions when updating the project
to JUnit 5;{88} project Spring Initializr{89} similarly rewrote pattern rule with AssertJ features
instead of JUnit 5’s assert.{90}

4.5 Limitations and Threats to Validity

Threats to construct validity—are we measuring the right things?—are limited given that
we primarily measure well-defined features (size, types, and so on). The classification in
exceptions according to their usage (see Section 4.2.1) is more delicate; to mitigate this
threat, we limited it to well-known and well-documented Java standard exceptions [79], and
one author reviewed the classification made by another one until agreement was reached.

We took great care to minimize threats to internal validity—are we measuring things
right? Our tool JUnitScrambler (see Section 4.3.3) implements complementary strategies to
extract useful information even from projects that are hard to build automatically without
a custom environment: it parses build files to find dependencies and library versions; scans
source code to detect test classes when JUnit’s discovery process fails; and feeds any addi-
tional information to JavaParser to boost type resolution. Still, a few limitations remain:
JUnitScrambler does not recognize some build systems (e.g., Bazel or Make); only processes
JUnit tests; may detect an incorrect version of JUnit in projects with overly complex build
processes; may miss some unusually complex combinations of fluent assertions or exceptions
whose type JavaParser cannot reconstruct. We manually went through hundreds of projects
and found these cases are rare—but there are a few more exception tests in the wild that
don’t feature in our analysis.

Threats to external validity—do the findings generalize?—mainly depend on the analyzed
projects. The 1157 projects we analyzed (selected as described in Section 4.3.2) are all open-
source; it’s possible that the exception tests of closed-source industrial projects have different
characteristics. Nonetheless, our projects include plenty of commits of testing code, and span
a wide range of size, maturity, and application domains—from widely used Java frameworks
maintained by large development teams to single-author simpler mobile apps.

4.6 Applications of Findings and Future Work

Tested exceptions

A large portion (76%) of all tests we analyzed target Java standard exceptions, which are also
prominent in web searches [79], StackOverflow posts [123], and mobile app bug reports [37,
64]. Unchecked exceptions IllegalArgumentException, NullPointerException, and
IllegalStateException were among the most tested; the same classes are most frequently
implicated in API misuses [196] and Android app bugs [37], and are among those with
often insufficient documentation [97, 173, 207]. Thus, studying even more closely the tests

86 How Java Programmers Test Exception Behavior

featuring these exceptions in combination with the code that triggers them is an interesting
direction for future work.

Messages and documentation

Undocumented exceptions (which may be thrown but are not mentioned by the documen-
tation or signature [97]) are a common reason for uncaught exception bugs [37, 97, 173].
Exception tests could be a source of implicit documentation in such cases.

We found that 15% of exception tests detail the expected message (stored by exception
objects); and 17% use assertions equipped with a string that describes what the assertion
checks. Both kinds of messages are a form of documentation{91} that could be studied using
natural language processing techniques [74, 207] to help debugging and to discriminate be-
tween correct and incorrect behavior [32, 207]. For example, one test{92} in Apache Hadoop
clearly outlines which exceptions indicate which behavior (e.g., “setting empty name should
fail”), and hence it would be a valid supplement to the tested method’s documentation.{93}

Such tests could also identify patterns of good testing practices and serve as a guide to writing
better, more thorough exception tests.

Wrapping

Exception wrapping—a form of propagation—is when one exception is caught and wrapped
by another exception [37]. Wrapping should not be used to hide errors (which should not
be handled, see Section 4.4.2) within regular unchecked exceptions—which has been found
may lead to crashes in Android apps [37].

We found 3% of all exception tests (in 19% of all projects) test on the cause of an ex-
ception, which indicates wrapping occurred. Such tests, although not common, may contain
precious implicit information useful to debug an application’s most complex exception be-
havior.

Exception testing patterns

The frequent usage of pattern try/catch has positive and negative implications. On the one
hand, it is the only pattern that can be used with any JUnit and Java versions—including for
complex scenarios.

On the other hand, using try/catch with JUnit 4 is considered a code smell [160, 175].
In fact, incorrect tests using try/catch introduced silent bugs in the test suites of projects us-
ing JUnit 4 [188]. It remains that, up to JUnit 5, the expressiveness of alternative patterns
test and rule remained limited (e.g., test cannot assert on messages/causes, and rule’s unusual
syntax is somewhat controversial [188]). In all, it is not surprising that developers of popu-
lar open-source projects have been found [175] to often prefer good old try/catch over other
patterns.

Introducing empty catch blocks is considered an anti-pattern, since it is associated with
more defects [48, 59, 86, 204]. Nevertheless, our data suggests that it may be legitimate in
testing code (as opposed to application code): empty catch blocks featured in about 50% of

4.7 Conclusions 87

all exception tests using pattern try/catch; more than 50% of such blocks were accompanied
by an informative comment (typically: //expected) which explains that idiom’s purpose.

Despite its limited expressiveness, pattern test remains popular with developers—probably
thanks to its conciseness—to the extent that a “vintage @Test”{94} JUnit 5 extension was in-
troduced to write pattern test even with the latest JUnit versions (which no longer support
it in the base library). Instead, other JUnit features (e.g., pattern assert) have failed to reach
widespread adoption (e.g., 2/3 of projects that use JUnit versions supporting assert do not
actually use it). Using our dataset and tool, we could perform a longitudinal study of how
projects migrated tests from JUnit 4 to newer versions—extending the qualitative analysis of
Section 4.4.3—to shed light on the interplay between available features and their adoption.

Finally, studying how AssertJ is used in combination with JUnit could deepen our un-
derstanding of testing practices. We found that 39% of all projects include exception tests
using pattern generic—usually through libraries such as AssertJ. Indeed, AssertJ is growing in
popularity [148, 202] since it provides expressive and concise idioms for testing all sorts of
behaviour—including exceptions [175].

4.7 Conclusions

This chapter described a large-scale study of tests exercising exception behavior in Java
projects. We found that such tests are an integral part of the project’s test suites we analyzed,
and that there is a considerable variety in the ways in which such tests are written and in
the different exception behaviors that are exercised—especially in larger projects with many
contributors.

Artifacts: the complete artifacts to support the replication of our experiments are avail-
able: https://doi.org/10.6084/m9.figshare.13547561.

https://doi.org/10.6084/m9.figshare.13547561

88 How Java Programmers Test Exception Behavior

5
Lightweight Precise Automatic Extraction of
Exception Preconditions in Java Methods

When a method throws an exception—its exception precondition—is a crucial element of
the method’s documentation that clients should know to properly use it. Unfortunately,
exceptional behavior is often poorly documented, and sensitive to changes in a project’s
implementation details that can be onerous to keep synchronized with the documentation.

We devised WIT, an automated technique that extracts the exception preconditions of
Java methods and constructors. WIT uses static analysis to analyze the paths in a method’s
implementation that lead to throwing an exception. WIT’s analysis is precise, in that it only
reports exception preconditions that are correct and correspond to feasible exceptional be-
havior. It is also lightweight: it only needs the source code of the class (or classes) to
be analyzed—without building or running the whole project. To this end, its design uses
heuristics that give up some completeness (WIT cannot infer all exception preconditions) in
exchange for precision and ease of applicability.

We ran WIT on the JDK and 46 Java projects, where it discovered 30 487 exception pre-
conditions in 24 461 methods, taking less than two seconds per analyzed public method on
average. A manual analysis of a significant sample of these exception preconditions con-
firmed that WIT is 100% precise, and demonstrated that it can often accurately and automat-
ically document the exceptional behavior of Java methods.

Structure of the Chapter

• Section 5.1 provides motivation for this chapter.

• Section 5.2 showcases motivating examples for our approach.

• Section 5.3 describes how our technique works.

• Section 5.4 describes the design of our experimental evaluation.

• Section 5.5 describes the results of our experimental evaluation.

89

90 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

• Section 5.6 presents the threats that affect the validity of our work.

• Section 5.7 discusses applications of our technique.

• Section 5.8 draws our conclusions.

5.1 Introduction

To correctly use a method, we must know its precondition, which specifies the valid inputs:
those that the method’s implementation can handle correctly. In programming languages
like Java, a method’s implementation may throw an exception to signal that a call violates
its precondition. If it does so, knowing the method’s exceptional behavior is equivalent to
knowing (the complement of) its precondition. Ideally, a method’s exceptional behavior
should be described in the method’s documentation (for example, in its Javadoc comments)
and thoroughly tested. In practice, it is known that a method’s documentation can be in-
complete or inconsistent with its implementation [150, 210], and that only a fraction of a
project’s test suite exercises exceptional behavior [126]. This ultimately limits the usability,
in a broad sense, of insufficiently documented methods: without precisely knowing its pre-
condition, programmers may have a hard time calling a method; test-case generation may
generate invalid tests that violate the method’s precondition; program analysis may have to
explicitly follow the implementation of every called method, which does not scale since it is
not modular.

To alleviate these problems, we present WIT (What Is Thrown?): a technique to auto-
matically infer the exception preconditions—the input conditions under which an exception
is thrown—of Java methods. As we discuss in Section 2.4.2, extracting preconditions and
other kinds of specification from implementations is a broadly studied problem in software
engineering (and, more generally, computer science). Our WIT approach is novel because
it offers a distinct combination of features. First, WIT is precise: since it is based on static
analysis, it reports preconditions only when it can determine with certainty that they are
correct. It is also lightweight, as it is applicable to the source code of individual classes of
a large project without requiring to build the project (or even to have access to all project
dependencies), and can combine its analysis of multiple projects in a modular fashion.

A key assumption underlying WIT’s design is that a significant fraction of a method’s
exceptional executions are usually simpler, shorter, and easier to identify than the other,
normal, executions. Therefore, WIT’s analysis (which we describe in detail in Section 5.3)
relies on several heuristics that drastically limit the depth and complexity of the program
paths it explores—for example, it bounds the length of paths and number of calls that it can
follow. Whenever a heuristics fails, WIT gives up analyzing a certain path for exceptional
behavior. In general, this limits the number of exception preconditions that WIT can reliably
discover. However, if our underlying assumption holds, WIT can still be useful and effective,
as well as lightweight and scalable.

We implemented WIT in a tool with the same name, which performs a lightweight static
analysis of Java classes using JavaParser for parsing and the Z3 SMT solver for checking
which program paths are feasible. Section 5.4 describes an experimental evaluation where

5.2 Showcase Examples of Using wit 91

we applied WIT to several modules of Java 11’s JDK, and 46 Java projects—including several
widely used libraries—to discover the exception preconditions of their public methods. WIT

inferred 30 487 exception preconditions of 24 461 methods—running for 1.9 seconds on
average on each of the 460 032 analyzed public methods.

A manual analysis of a significant random sample of the inferred preconditions con-
firmed that WIT is precise: all manually checked preconditions were correct. It also re-
vealed that it could retrieve 9–83%1 of all supported exception preconditions in project
Apache Commons IO—achieving even higher recall on projects that use few currently un-
supported Java features. Our empirical evaluation also indicates that WIT can be useful to
programmers: 38% of the exception preconditions in the JDK’s sample and 72% in the other
projects’ were not already properly documented; and 7 pull requests—extending the public
documentation of open-source projects with a selection of WIT-inferred preconditions—were
accepted by the projects’ maintainers.

5.2 Showcase Examples of Using wit

We briefly present examples of applying WIT to detect the exception preconditions of library
functions in two Apache projects: Dubbo{95} and Commons Lang.{96} The examples show-
case WIT’s capabilities and practical usefulness: WIT could automatically extract exception
preconditions in many methods of these two projects, including some that were not doc-
umented (Section 5.2.1) or incorrectly documented (Section 5.2.2). Section 5.5.6 reports
further empirical evidence that WIT’s exception preconditions can be useful as a source of
documentation.

To better gauge WIT’s capabilities, let us stress that the two Apache projects discussed
in this section are widely used Java libraries; for instance, Dubbo’s GitHub repository{97}

has over 24 thousand forks and 36 thousand stars. As a result, they are particularly well
documented and tested [150, 207]. The fact that WIT could find some of their few missing or
inconsistent pieces of their documentation indicates that it has the potential to be practically
useful and widely applicable.

5.2.1 Missing Documentation

Listing 5.1 shows an excerpt of two overloaded implementations of method bytes2base64,
which takes a byte array and represents it as a string in base 64. As we can see from the
initial lines in bytes2base64’s second implementation, the two methods have fairly detailed
preconditions; furthermore, since the first method calls the second with additional fixed
argument values, the first’s precondition is a special case of the second’s.

Unfortunately, the documentation of these methods does not mention these precondi-
tions: for example, the second method’s Javadoc comment vaguely describes off and len

as simply “offset” and “length”, without clarifying that they should be non-negative values.
This lack of documentation about valid inputs decreases the usability of the methods for
users of the library.

1The range depends on which features and which output of WIT we consider; see Section 5.5.2 for all details.

92 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

1 public static String bytes2base64(byte[] b, char[] code)
2 { return bytes2base64(b, 0, b.length, code); }
3

4 public static String bytes2base64(final byte[] bs, final int off, final int len, final
,→ char[] code) {

5 if (off < 0) throw new IndexOutOfBoundsException();
6 if (len < 0) throw new IndexOutOfBoundsException();
7 if (off + len > bs.length) throw new IndexOutOfBoundsException();
8 if (code.length < 64) throw new IllegalArgumentException();
9 //...

10 }

Listing 5.1. Excerpts of the implementation of two methods in Apache Dubbo’s class Bytes.

1 /** Returns the minimum value in an array.
2 * @param array an array, must not be null or empty
3 * @return the minimum value in the array
4 * @throws IllegalArgumentException if array is null
5 * @throws IllegalArgumentException if array is empty */
6 public static int min(final int... array) {
7 { validateArray(array); /* ... */ }

Listing 5.2. Excerpt of the Javadoc comment and implementation of a method in Apache Commons
Lang’s class NumberUtils.

Running WIT on class Bytes automatically finds the preconditions of these (as well as
many other) methods, thus providing a useful form of rigorous documentation. For instance,
one of the exception preconditions found by WIT for Listing 5.1’s second method:

throws: IndexOutOfBoundException
when: off >= 0 && len >= 0 && bs.length < len + off

example: [off=0, len=1, bs.length=0]

corresponds to the path that reaches line 7 in Listing 5.1. WIT also understands that the first
method never throws this exception, but it can still throw others such as:

throws: IllegalArgumentException
when: b.length >= 0 && code.length < 64

example: [b.length=0, code.length=0]

In fact, WIT only reports exception preconditions that correspond to feasible paths. Each
precondition comes with an example of argument values that make the precondition true.
These are not directly usable as test inputs, since they describe the input’s properties without
constructing them; but they are useful complements to the precondition expressions, and
help users get a concrete idea of the exceptional behavior.

5.2.2 Inconsistent Documentation

Listing 5.2 shows the complete Javadoc documentation and a brief excerpt of method min

in the latest version of Apache Commons Lang’s class NumberUtils, which computes the

5.3 How wit Works 93

Java source CFG Local Expaths Global Expaths Feasible Paths
Exception

Preconditions

a1→ a2→ ·· · → aA

b1→ b2→ ·· · → bB

· · ·

a1→ γ2→ γ3→ ·· · → aA

a1→ δ2→ δ3→ ·· · → aA

b1→ b2→ θ3→ ·· · → δB

b1→ κ2→ b3→ λ4→ ·· · → δB

· · ·

a1→ δ2→ δ3→ ·· · → aA

throws: Error
when: x > 0

example: [x=1]

parsing

JavaParser

simple
paths

JGraphT

inlining SMT encoding

Z3

backward
substitution

SymPy

Figure 5.1. An overview of how WIT works. WIT parses the source code of the Java classes to be analyzed, and
builds a control-flow graph (CFG) of every method. It enumerates the simple paths in every method’s CFG that
may end with an exception (expaths). It then transforms these expaths local to a specific method into global
expaths by inlining method calls or previously extracted exception preconditions (if they are available); this
may transform a single local expath into multiple global expaths. To determine which expaths are feasible, WIT

encodes their constraints as an SMT problem and uses the Z3 SMT solver to check if they are satisfiable. It finally
transforms all feasible paths into exception preconditions.

minimum of an array of integers. Unlike the previous example, min’s documentation is
detailed and clearly expresses the conditions under which an exception is thrown. Un-
fortunately, the documentation is partially incorrect: when array is null, min throws a
NullPointerException, not an IllegalArgumentException, as precisely reported by WIT:
throws: NullPointerException when: array == null

This inconsistency is due to a change in the implementation of validateArray, which is
called by min to validate its input and uses methods of class Validate to perform the valida-
tion. In version 3.12.0 of the library, validateArray switched{98} from calling Validate.isTrue(a!=null)
(which throws an IllegalArgumentExceptionwhen the check fails) to calling Validate.notNull(a)
(which throws a NullPointerException instead) to check that a is not null.

To help locate the source of any exceptional behavior, WIT also outputs the line where
the exception is thrown, and possibly the triggering method call. In this example, it would
clearly indicate that the exceptional behavior comes from a call to Validate.notNull.

This information can help detect and debug such inconsistencies, which would be quite
valuable to project developers and users. As we discuss in Section 5.5.6, maintainers of
Apache libraries were appreciative of our pull requests which extended the projects’ docu-
mentation with some of WIT’s exception preconditions.

5.3 How wit Works

Figure 5.1 overviews how WIT’s analysis works. This section details each step and discusses
some features of its current implementation.

WIT inputs the source code of some Java classes; it analyzes the methods and construc-
tors of those classes to determine their exception preconditions, that is the conditions on the
methods’ input that lead to the methods throwing an exception. It then outputs the exception
preconditions it could find, together with their matching exception class, as well as examples
of inputs that satisfy the exception preconditions. WIT’s analysis only needs the source code
of the immediate classes to be analyzed: it does not need a complete project’s source code,
nor to compile or build the project.

94 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

1 public static boolean[] insert(final int k, final boolean[] a, final boolean... v) {
2 if (a == null) { return null; }
3 if (isEmpty(v)) { return clone(a); }
4 if (k < 0 || k > a.length)
5 { throw new IndexOutOfBoundsException(); }
6 // ...
7 }
8

9 public static boolean isEmpty(boolean[] x)
10 { return getLength(x) == 0; }
11

12 public static int getLength(boolean[] y)
13 { if (y == null) { return 0; } return y.length; }

Listing 5.3. Excerpt of method ArrayUtils.insert in Apache Commons, and some of the methods it
calls.

WIT can analyze both regular methods and constructors of a class. Thus, for brevity, we
use the term “methods” to collectively refer to both methods and constructors.

5.3.1 Parsing and CFG

WIT parses the source code given as input using JavaParser,{99} and constructs a control-flow
graph (CFG) of the methods in the input classes using library JGraphT.{100} More precisely,
we build a CFG for each method m individually; and annotate branches in the CFG with each
branch’s Boolean condition.

Listing 5.3 shows excerpts of 3 methods of class ArrayUtils{101} in Apache Commons
Lang. Method insert puts some values v into an array a of Booleans at a given index k.
The initial part of its implementation calls another method, isEmpty, of the same class to
determine if v is empty; in turn, isEmpty calls method getLength. WIT builds CFGs for
insert, isEmpty, and getLength, since they are all part of the input source code.

5.3.2 Local Exception Paths

When analyzing a method m, WIT collects its local exception paths (“expaths” for short). These
are all simple directed paths2 on m’s CFG that end with a node corresponding to a statement
that may throw an exception—either explicitly with a throw or indirectly with a a call (which
may return exceptionally).

In Listing 5.3’s example, one of insert’s local expaths p goes through the else branch on
lines 2–3 and through the then branch on line 4, ending with the throw on line 5:

p : if2
a!=null
−−−−−−→ if3

!isEmpty(v)
−−−−−−−−−−→ if4

k<0 || k>a.length
−−−−−−−−−−−−−−−−→ throw5

2A simple path is one where any one node appears at most once. We compute them using JGraphT’s
AllDirectedPaths method.{102}

5.3 How wit Works 95

5.3.3 Global Exception Paths

After collecting expaths local to each method, WIT converts them into global expaths by in-
lining calls to other methods.

Given a local expath ℓ, for each node nx in ℓ that calls some other method x, WIT checks
whether x’s CFG is available (that is, whether x’s implementation was part of the input). If
it is, WIT enumerates all simple paths that go through the CFG of x, and splices each of them
into ℓ at nx. In other words, it transforms the local path ℓ so that it follows inter-method
calls. Since a method usually has multiple paths, one local expath may determine several
global expaths after inlining. WIT inlines calls recursively (with some limits that we discuss
in Section 5.3.7).

When a called method x’s CFG is not available in the current run, WIT first looks whether
it analyzed x’s source code in some of its previous runs. If this is the case, WIT replaces the
call to x with x’s exception preconditions it extracted in the previous runs—following the
modular analysis procedure we explain in Section 5.3.4. Otherwise, if no information about
x is available or the user deliberately disabled modular analysis, WIT doesn’t inline calls to it
and marks them as “opaque”.

WIT inlines the call to isEmpty in local expath p (Listing 5.3’s example) since isEmpty is

part of the same analyzed class ArrayUtils. Inlining the call replaces p’s edge if3
!isEmpty(v)
−−−−−−−−−−→

if4 with getLength’s only path: if3
!(getLength(v)==0)
−−−−−−−−−−−−−−−−−→ if4. Since the implementation

of getLength is available too, WIT recursively inlines its two paths, which finally gives two
global expaths p1, p2 that inline insert’s local expath p’s calls:

p1 : if2→ if3→ if13
v==null,0 != 0
−−−−−−−−−−−−−→ if4→ throw5

p2 : if2→ if3→ if13
v!=null,v.length != 0
−−−−−−−−−−−−−−−−−−−→ if4→ throw5

5.3.4 Modular Analysis

By default, WIT saves all exception preconditions it extracts—together with their associated
global exception paths—in a database, so that they can be reused to perform a modular
analysis. This is useful whenever a method m in some project A calls another method n in
some other project B. If we provide A and B in a single run, WIT’s analysis has access to
all the source code; thus, in principle, it can inline the code of B’s n when analyzing A’s m.
However, this may not scale, as the number of paths to be considered grows like the product
of m’s and n’s paths. To perform modular analysis, we instead first run WIT on B alone; then,
we run it on A alone. When WIT analyzes m in A, it finds that it calls an external method n

in B; thus, it reuses n’s saved exception precondition information to analyze the exceptional
behavior of m when analyzing A without having to analyze n again (or without treating it
like an opaque method, which may miss information).3

3“Modular analysis” simply refers to WIT’s capability of reusing the exception preconditions of previously
analyzed projects. The user controls how this capability is applied: WIT will always access the complete source
code of the project or projects given to it as input; if the user wants to analyze a project B separately from another
project A, they will have to run WIT twice (once on B, and then once on A) with modular analysis enabled.

96 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

More precisely, if modular analysis is enabled, whenever a node nx in a local expath ℓ
calls a method x that was analyzed in a previous run, WIT replaces the call to x by inlin-
ing any global exception path associated with x’s exception preconditions (and replacing, as
usual, x’s formal parameters with the actual call arguments). Just like regular inlining (Sec-
tion 5.3.3), this may introduce multiple global expaths for a single call to x. It is necessary,
in general, to consider all available global expaths for a called method, so that all possible
side effects of the call are accounted for. WIT can use both expres and maybes for modular
analysis.4 Since maybes are not guaranteed to be correct, any global expath that includes a
maybe is automatically also classified as maybe.

As an example of where modular analysis can improve WIT’s capabilities, consider List-
ing 5.4. Method generate{103} of class RandomStringGenerator in project Commons Text
calls method Validate.isTrue{104} in another project Commons Lang. If we run WIT on
project Commons Text alone, the call to isTrue is marked as opaque, and hence no exception
precondition would be reported for this path. We could run WIT on both projects Commons
Text and Commons Lang together; this would take a considerable amount of time, and it
would not scale to combining even more projects. Instead, we can use WIT’s modular analy-
sis and first analyze Commons Lang in isolation; this would report the exception precondition
!expr for method validate.isTrue. Then, when WIT runs on Commons Text, it would re-
place the call to isTrue in generate with if (!(length > 0))throw new IAE(),5 which
leads to inferring exception precondition length <= 0 for this path in method generate.

As we will demonstrate in Section 5.5, modular analysis can boost WIT’s output and help
achieve a better scalability.

Implementation-wise, WIT persists JSON objects into a MongoDB{105} instance. For JSON
serialization and deserialization, we combine JavaParser’s serialization package{106} with the
Moshi JSON library.{107}

5.3.5 Path Feasibility

WIT builds global expaths only based on syntactic information in the CFGs; therefore, some
paths may be infeasible (not executable). To determine whether a global expath is feasible,
WIT encodes it in logic form as an SMT (Satisfiability Modulo Theory) formula [15], and uses
the Z3 SMT solver [47] to determine whether the expath’s induced constraints are feasible.

To this end, it first transforms the path into SSA (static single assignment) form, where
complex statements are broken down into simpler steps, and fresh variables store the in-
termediate values of every expression. We designed a logic encoding of Java’s fundamental
types (int, boolean, byte, arrays, strings) with their most common operations (including
arithmetic, equality, length, contains, isEmpty), as well as of a few widely used JDK library
methods (such as Array.getLength). WIT uses this encoding to build an SMT formula φ
corresponding to each global expath p: ifφ is satisfiable, then the global expath p is feasible,
and hence it corresponds to a possible exceptional behavior of method m.

4“Expres” and “maybes” are precisely introduced in Section 5.3.5. In a nutshell, expres come from expaths that
are provably feasible, and hence they are correct by constructions; maybes come from expaths with inconclusive
feasibility analysis, and hence they are just educated guesses that may be incorrect.

5IAE here is short for IllegalArgumentException.

5.3 How wit Works 97

1 // In project Commons Text, class RandomStringGenerator
2 public String generate(final int length) {
3 if (length == 0) {
4 return StringUtils.EMPTY;
5 }
6 Validate.isTrue(length > 0, "Length %d is smaller than zero.", length);
7 // ...
8 }
9

10 // In project Commons Lang, class Validate
11 public static void isTrue(final boolean expr, final String msg, final long value) {
12 if (!expr) {
13 throw new IllegalArgumentException(String.format(msg, Long.valueOf(value)));
14 }
15 }

Listing 5.4. An example of code that can benefit from modular analysis: method
RandomStringGenerator.generate() in project Commons Text calls method Validate.isTrue()
in another project Commons Lang.

WIT encodes φ as a Python program using the Z3 SMT solver’s Z3Py Python API.6 List-
ing 5.5 shows a simplified excerpt of the SMT program encoding the feasibility of insert’s
global expath p1. First, it declares logic variables of the appropriate types to encode program
variables (e.g., k), their basic properties (e.g., a_length, which corresponds to the Java ex-
pression a.length), and the values passed via method calls (e.g., getLength is an integer
variable storing getLength()’s output). Then, it builds a list c of constraints that capture the
path constraints and the semantics of the statements along the path. For example, a_length
must be nonnegative, since it corresponds to array a’s length (line 5); the properties of array
v are copied to those of x, since insert’s argument v is the actual argument for isEmpty’s
formal argument x (line 7); and path constraint !isEmpty(v) corresponds to the comple-
ment of Boolean variable isEmpty (line 12). In this case, Z3 easily finds that the constraints
in c are unsatisfiable, since Not(0 == 0) is identically false. In contrast, the constraints
corresponding to path p2 are satisfiable, and thus Z3 outputs a satisfying assignment of all
variables in that case.

Sometimes WIT does not have sufficient information to determine with certainty whether
a path is feasible. When a path includes a call to an opaque method (whose implementation
is not available or when the analysis fails) WIT’s feasibility check is underconstrained. In
these cases, WIT still performs a feasibility check but reports any results as maybe, to warn
that the output may not be correct.

In Listing 5.3’s example, suppose that getLength’s implementation wasn’t available. In
this scenario, based on its signature, WIT would only know that getLength returns an integer
without any constraints; therefore it would classify path p as feasible but mark it as maybe
since it is just an educated guess without correctness guarantees.

6WIT’s Z3 ad hoc encoding also handles aliasing by explicitly keeping track of possible aliases along each
checked path. Thanks to the other heuristics that limit path length (Section 5.3.7), this approach is feasible in
practice.

98 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

1 # logic variables
2 k = Int(’k’)
3 a_null = Bool(’a==null’)
4 a_length = Int(’a.length’)
5 c = [a_length >= 0, v_length >= 0] # implicit
6 c += [Not (a_null)] # a != null
7 x_null, x_length = v_null, v_length # call isEmpty
8 y_null, y_length = x_null, x_length # call getLength
9 c += [y_null] # y == null

10 getLength = 0 # return 0
11 isEmpty = (getLength == 0) # return getLength(x)==0
12 c += [Not(isEmpty)] # !isEmpty(v)
13 c += [Or(k < 0, k > a_length)] # k < 0 || k > a.length

Listing 5.5. Excerpt of the SMT encoding corresponding to global expath p1 of method insert in
Listing 5.2.

5.3.6 Exception Preconditions

A feasible path p identifies a range of inputs of the analyzed method m that trigger an ex-
ception. In order to characterize those inputs as an exception precondition, WIT encodes p’s
constraints as a formula that only refers to m’s arguments, as well as to any members that
are accessible at m’s entry (such as the target object this, if m is an instance method). To this
end, it works backward from the last node of exception path p; it collects all path constraints
along p, while replacing any reference to local variables with their definition. For example,
method void f(int x){int y=x+1; if(y > 0)throw;} has a single feasible expath with
path condition y > 0, which becomes x + 1 > 0 after backward substitution through the
assignment to variable y. Since x + 1 > 0 only mentions argument x, it is a suitable excep-
tion precondition for method m.

Sometimes WIT cannot build an exception precondition expression that only mentions
arguments and other visible members. A common case is when a path includes opaque
calls: since the semantics or implementation of these calls is not available, any expressions
including them may not make sense in a precondition. In all these cases, WIT still reports the
exception expression obtained by backward substitution, but marks it as a maybe to indicate
that it may not be correct. Another, more subtle case occurs when the exception precondition
Boolean expression includes calls to methods (as opposed to just variable lookups). If these
methods are not pure (that is, they do not change the program state), the precondition may
be not well-formed. For instance, a precondition x.inc()== 0, where calling inc increments
the value of x. Here too, WIT is conservative and marks as maybe any exception precondition
that involves calls to methods that are not known to be pure.

Before outputting any exception preconditions to the user, WIT simplifies them to remove
any redundancies and display them in a form that is easier to read. To this end, it uses
SymPy [139],{108} a Python library for symbolic mathematics. Java’s syntax is sufficiently
similar to C’s that we can also enable SymPy’s pretty printing of expressions using C syntax,
and then additionally tweak it to amend the remaining differences with Java. While con-

5.3 How wit Works 99

ceptually simple, the simplification step is crucial to have readable exception preconditions.
For example, SymPy simplifies the ugly expression

(!(x==null))&&(!(x==null))&&(0+1==1)&&(y<0||y>x.length)

into the much more readable

(y > x.length || y < 0)&& null != x

which doesn’t repeat x != null and omits the tautology 0 + 1 == 1.
WIT’s final output consists of a series of tuples with: (a) an exception precondition,

(b) whether it is a maybe, (c) the thrown exception type, (d) and an example of inputs
that satisfy the precondition (given by Z3’s successful satisfiability check). For debugging,
WIT can also optionally report the complete throw statement (including any exception mes-
sage or other arguments used to instantiate the exception object), the line in the analyzed
method m where the exception is thrown or propagated, and a sequence of method calls start-
ing from the analyzed method and ending in the throwing method. Moreover, WIT reports
the generated Z3 and SymPy Python programs’ source code.

5.3.7 Heuristics and Limitations

Let us now zoom in on a few details of how WIT’s implementation works, which clarify its
capabilities and limitations. To put these details into the right perspective, let us recall
WIT’s design goals: it should be precise and lightweight; it’s acceptable if achieving these
qualities loses some generality—as long as a sizable fraction of exception preconditions can
be precisely determined.

Using maybes. As discussed in Section 5.3.5, WIT provides two disjoint sets of excep-
tional preconditions as output: expres and maybes. In practice, reporting both gives users
more flexibility in how to use WIT’s output according to different use cases. If correctness is
crucial (for example, if one uses WIT’s output as formal specification), then users should only
consider expres and ignore maybes. On the other hand, if some degree of uncertainty in the
correctness of an exception precondition is acceptable in exchange for a higher recall, then
users may also consider maybes. The snag is that they may have to spend extra effort to
validate the maybes, but this may be acceptable if there exist practical validation means (for
example, an extensive test suite). Any kind of hybrid approach is also possible; for instance,
one may first only use expres, but consider using maybes selectively for a few methods where
WIT’s feasibility analysis struggled due to the features used there.

Implicit exceptions. WIT only tracks exceptions that are explicitly raised by a throw

statement; it does not consider low-level errors—such as division by zero, out-of-bound array
access, and buffer overflow—that are signaled by exceptions raised by the JVM. This restric-
tion is customary in techniques that infer exceptional behavior, since implicitly thrown excep-
tions are “generally indicative of programming errors rather than design choices [195]” [24],
and usually do not belong in API-level documentation [66] and are best analyzed separately.
Extending WIT to also track implicit exceptions would not be technically difficult; for ex-
ample, one could first instrument the code to be analyzed with explicit checks before any

100 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

statement that may thrown an implicit exception.7 However, indiscriminately considering all
exceptions that are thrown implicitly would produce a vast number of boilerplate exception
preconditions that are not specific to a method’s explicitly programmed behavior; hence,
they would be outside WIT’s current focus.

Java features. WIT’s CFG construction currently does not fully support some Java fea-
tures: instanceof operators, for-each loops, switch statements, and try/catch blocks.
When these features are used, the CFG may omit some paths that exist in the actual program.
(Supporting the latter three features is possible in principle, but would substantially com-
plicate the CFG construction.)8 The SMT encoding used for path feasibility (Section 5.3.5)
is limited to a core subset of Java features and standard library methods. As a result, WIT

won’t report exception preconditions that involve unsupported features (or will report them
as maybe, that is without correctness guarantee).

Path length and number. In large methods, even some local expaths can be too complex,
which bogs down the whole analysis process. Therefore, WIT only enumerates paths of up to
N = 50 nodes, which have a much higher likelihood of being manageable. Complex methods
may have thousands of local paths. Therefore, WIT analyzes up to N = 500 paths of a given
method or constructor.

Inlining limits. Inlining can easily lead to a combinatorial explosion in the number and
length of the expaths; therefore, a number of heuristics limit inlining. First, a path can be
inlined only if it is up to N = 50 nodes—the same limit as for local expaths. Second, WIT

stops inlining a call in a path after it has reached a limit of I = 100 inlined paths—that is, it
has branched out the call into I different ways. It can still inline other calls in the same path,
but this limit avoids recursive inlinings that are likely to blow up. Third, WIT enumerates
the inlinings of a call in random order; in cases where the limit I is reached, this increases
the chance of collecting a more varied set of inlined paths instead of getting stuck in some
particularly complex ones (if the limit I is not reached, the enumeration order is immaterial).

Maybes heuristics. The feasibility of exception preconditions reported as maybes could
not be verified; hence, they are educated guesses. Consequently, WIT deploys two sim-
ple heuristics that filter out maybes that are overwhelmingly unlikely to be correct. First,
WIT does not report any maybe assertion that consists of more than six conjuncts or dis-
juncts; we found that the constraints of such large maybes are usually unsatisfiable. Second,
WIT drops any maybe that includes constraints over private fields of the JDK’s String and
StringBuilder classes. This heuristic only applies when WIT uses modular analysis: these
two JDK classes have a complex implementation involving native code and JVM internals.
Thus, WIT’s analysis of String and StringBuilder can only retrieve a few correct maybes;
as a result, using them in the modular analysis of other client classes is likely to introduce a
large number of spurious maybes—which this heuristic avoids.

Timeouts. Z3’s satisfiability checks (to determine if a path is feasible) may occasionally
run for a long time. WIT limits each call to Z3 to a Z = 15-second timeout; when the timeout

7As a simple example, as done for testing [68], before every array access such as x := a[k] add a guard
if (!(0 <= k && k < a.length))throw new IndexOutOfBoundsException(), so that the implicitly thrown
exception becomes explicit.

8Even mature static analysis frameworks such as Spoon have only partial/experimental support for features
such as try/catch.{109}

5.4 Experimental Evaluation 101

expires, Z3 is terminated and the path is assumed to be infeasible. There is also an overall
timeout of T = 10 minutes per analyzed class. If WIT’s analysis still runs after the timeout,
it probably means that the class’s methods are particularly intricate and hard to process;to
remain lightweight, WIT skips to the next class.

Configurable options. The parameters regulating these heuristics can be easily changed
if one needs to analyze code with peculiar characteristics, when a large running time is
not a problem. WIT also offers two slightly different Z3 logic encodings of some Java fea-
tures. By default, it employs a conservative encoding that ensures that all expressions used
in an exception precondition are well defined (for example, a.length implicitly requires that
a != null). In some complex cases, this encoding may be overly conservative, leading to
marking as unsatisfiable exception preconditions that are actually correct. To accommodate
these unusual cases, WIT also offers a less conservative logic encoding of the same features,
which trades off correctness for recall; users can switch to this alternative encoding when
analyzing software where a high recall is more important than an absolute correctness guar-
antee.

Modular analysis. WIT’s modular analysis (Section 5.3.4) is also configurable to fit each
application scenario. By default, WIT performs modular analysis: if it encounters a call to a
method that it analyzed in a previous run, it uses the called method’s exception precondi-
tions to determine the exception preconditions of the caller. In contrast, if the user explicitly
disables modular analysis, WIT analyzes each project in isolation. Section 5.5.4 describes
experimental data that we collected to better understand the practical impact of using WIT’s
modular analysis. When modular analysis is enabled, WIT can reuse only expres or both ex-
pres and maybes. This is another parameter that one can choose according to how important
a high recall is: reusing also maybes can only increase the number of maybes inferred by WIT,
which come with no guarantee of being correct. In general, modular analysis is an additional
option made available by WIT, which need not be used in all situations: whether enabling it
is beneficial depends on the projects under analysis and on the user’s requirements.

5.4 Experimental Evaluation

This section describes the empirical evaluation of WIT, which targets the following research
questions.

RQ1 (precision): How many of the exception preconditions detected by WIT are correct?

RQ2 (recall): How many exception preconditions can WIT detect?

RQ3 (features): What are the most common features of the exception preconditions de-
tected by WIT?

RQ4 (modularity): How do the exception preconditions detected by WIT change if modular
analysis is disabled?

RQ5 (efficiency): Is WIT scalable and lightweight?

102 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

RQ6 (usefulness): Are WIT’s exception preconditions useful to complement programmer-
written documentation?

5.4.1 Experimental Subjects

In our evaluation, we ran WIT on two groups of projects: several standard libraries in Java’s
JDK and 46 open-source Java projects surveyed by recent papers investigating the (mis)use
of Java library APIs [96, 196, 207] and the automatic generation of tests for some of these
libraries [150]. Table 5.1 lists all our experimental subjects.

JDK modules. The JDK (Java Development Kit) includes arguably Java’s most widely
used and mature libraries, featuring virtually in every Java project [95, 150] and abundantly
documented. We selected JDK 11{110} to run our experiments, since it’s the most recent LTS
(Long Term Support) release that JavaParser can handle at the time of writing. Given the
JDK’s gargantuan size and complexity, we selected five of its modules (subdirectories of
java.base/share/classes) and ran WIT on all of them as if it were a regular Java project:
modules com/sun, java, javax, sun, and jdk.

Other projects. The other group of 46 experimental subjects includes several projects
that are also large, widely-used, mature Java projects in various domains (base libraries, GUI
programming, security, databases)—especially the 26 projects from the Apache Software
Foundation, which recent empirical research has shown to be extensively documented and
thoroughly tested [150, 207]. On the other hand, a few projects taken from [96] are smaller,
less used, or both. For instance, projects gae-java-mini-profiler, visualee, and AutomatedCar are
no longer maintained. This minority of projects makes the selection more diverse, so that
we will be able to evaluate WIT’s capabilities in different scenarios.

We used the latest commit/stable release in every project, at the time of writing, with
two exceptions: Apache lucene-solr was recently split into two separate projects, and thus
we used the last version before the split; we analyzed version 2.6 of Apache Commons IO to
match [150]’s thorough manual analysis—which we used as ground truth to answer RQ2.

5.4.2 Experimental Setup

We ran WIT on the source code of all projects, after excluding directories that usually contain
tests (e.g., src/test/) or other auxiliary code. All experiments ran on a Windows 11 Intel i9
laptop with 32GB of RAM. By default, WIT only infers the exception preconditions of public
methods; if a public method calls a non-public one, WIT will also analyze the latter , but
will report only public exception preconditions. WIT analyzes each class in isolation; then, it
combines the results for all classes in the same project and outputs them to the user.

Unless we explicitly state otherwise, WIT ran with default options in the experiments. In
particular, it performed modular analysis (described in Section 5.3.4); therefore, we first ran
WIT on the JDK modules, then on the Apache Commons libraries (lang, io, text, math, configu-
ration, in this order) followed by all other projects in alphabetical order. Since practically all
projects use some JDK libraries, and several projects also use Apache Commons libraries, this
execution order maximizes the chances that WIT can reuse the results of one of its previous
runs to perform an effective modular analysis. In contrast, client-of dependencies between

5.4 Experimental Evaluation 103

projects other than the JDK and Apache Commons libraries are more sparse; therefore, the
alphabetical order is somewhat arbitrary, but even following a different order is unlikely to
significantly affect WIT’s capabilities.

To answer RQ1 (precision), we performed a manual analysis of a sample of all exception
preconditions reported by WIT to determine if they correctly reflect the exceptional behavior
of the implementation. This thesis’ author tried to map each inferred exception precondition
to the source code of the analyzed method. In nearly all cases, the check was quick, and its
outcome clear. The few exception preconditions whose correctness was not obvious were
analyzed by this work’s co-author as well, and the final decision was reached by consensus.
We were conservative in checking correctness: we only classified an exception precondition
as correct if the evidence was clear and easy to assess.

To answer RQ2 (recall), we used Nassif et al. [150]’s dataset—henceforth, DSC—as
ground truth. DSC includes 844 manually-collected exception preconditions9 (expressed in
structured natural language, e.g. “if offset is negative”) for all public methods in Apache
Commons IO’s base package collected from all origins (package code, libraries, tests, docu-
mentation, . . .). We counted the exception preconditions inferred by WIT that are semanti-
cally equivalent to any in DSC. Matching DSC’s natural-language preconditions to WIT’s was
generally straightforward, as we didn’t have to deal with subtle semantic ambiguities: since
WIT only reports correct exception preconditions as expres, we only had to match (usually
simple) natural-language expressions to their Java Boolean expression counterparts.

Using DSC as ground truth assesses WIT’s recall in a somewhat restricted context: (i) DSC

targets exclusively the Commons IO project, whose extensive usage of I/O operations com-
plicates (any) static analysis; (ii) DSC describes all sorts of exceptional behavior, including
the “not typically documented” runtime exceptions [150]. To assess WIT’s recall on a more
varied collection of projects, we also considered Zhong et al. [207]’s dataset—henceforth,
DPA—which includes 503 so-called “parameter rules” of public methods in 9 projects (a sub-
set of our 46 projects described in Section 5.4.1). A parameter rule is a pair 〈m, p〉, where
m is a fully-qualified method name and p is one of m’s arguments; it denotes that calling m
with some values of p may throw an exception. Important, parameter rules do not express
the values of p that determine an exception, and hence they are much less expressive than
preconditions; however, they are still useful to determine “how much” exceptional behavior
WIT captures. We counted the exception preconditions inferred by WIT that match DPA: a
precondition c matches a parameter rule 〈m, p〉 if c is an exception precondition of method
m that depends on the value of p. This is a much weaker correspondence than for DSC, but
it’s all the information we can extract from DPA’s parameter rules.

To better characterize the exception preconditions that WIT could not infer, we performed
an additional manual analysis of: (a) 746 of DSC’s exception preconditions among those that
WIT did not infer (b) 218 exception preconditions reported by WIT as “maybe” (that is, which
may be incorrect). These 964 additional cases help assess what it would take to improve
WIT’s recall.

To answer RQ3 (features), during the manual analysis of precision we also classified
the basic features of each exception precondition r of a method m. We determine whether

9We exclude 6 innacurate cases.

104 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

r corresponds to an exception that is thrown directly by m or propagated by m (and thrown
by a called method). We count the number of Boolean connectives || and && in e, which
gives an idea of r ’s complexity. Then, we determine if each subexpression e of r constraints
m’s arguments, or m’s object state; and we classify r ’s check according to whether it is: (a) a
null check (whether a value is null), (b) a value check (whether a value is in a certain set of
values), (c) a query check (whether a function call returns certain values). For example, here
are expressions of each kind for a method m with arguments int x and String y, whose
class includes fields int[] a, int count, and method boolean active():

void m(int x, int[] y) argument state

null y == null this.a != null
value x == 1 this.count > 0
query y.isEmpty() !this.active()

An exception precondition may combine expressions of different kinds; for instance,
a != null && a.length > 0 combines a null and a value check.

To answer RQ4 (modularity), we ran WIT again on 5 projects with modular analysis
disabled, and compared WIT’s output on these projects with and without modular analysis. We
selected the 5 projects from diverse domains, which demonstrate using different JDK libraries
and methods. Besides comparing the number of reported exception preconditions with and
without modular analysis, we manually inspected 75 maybes: (a) For each project, among
methods for which both the modular and non-modular analysis reported some maybes, we
randomly picked 6 maybes reported by the non-modular analysis and 6 maybes reported by
the modular analysis for the same methods;10 this sample of 60 maybes (6 × 5 × 2) gives
us an idea of how maybes change when modular analysis is enabled. (b) For each project,
among methods for which only the modular analysis reported some maybes, we randomly
picked 3 maybes; this sample of 15 maybes (3× 5) demonstrates cases where the modular
analysis strictly outperforms the non-modular one.

To answer RQ6 (usefulness), we first inspected the source code documentation (Javadoc
and comments) of all methods with exception preconditions analyzed to answer RQ1, look-
ing for mentions of the thrown exception types and of the conditions under which they are
thrown. We focused on Javadoc documentation: while we also considered non-structured
comments a priori, all cases of documented exceptional behavior that we found used at least
some Javadoc syntax. We also selected 90 inferred exception preconditions among those
that were not already documented, and submitted them as 8 pull requests in 5 projects: Ac-
cumulo,{111} Commons Lang,{112},{113},{114} Commons Math,{115},{116} Commons Text,{117} and
Commons IO.{118} We selected these five projects as they are very active and routinely spend
effort in maintaining a good-quality documentation. Each pull request combines the excep-
tion preconditions of methods in the same class or package, and expresses WIT’s exception
preconditions using Javadoc @throws tags. To compile each pull request, we sometimes
complemented the Javadoc with a brief complementary natural-language description, and
possibly some tests (expressing WIT’s example inputs in the form of unit tests). We also tried
to adjust the Javadoc syntax to be consistent with each project’s style (for example, express-

10To ensure a more varied sample, we targeted 3+ 3 methods that use the JDK and 3+ 3 that do not.

5.5 Experimental Results 105

ing a != null as either a not null or @code a != null). In all cases, reformulating WIT’s
output was a trivial matter.

5.5 Experimental Results

As described in Section 5.3.6, WIT produces two kinds of exception preconditions. The main
output are those whose feasibility was fully checked (Section 5.3.5); others are marked as
maybe and can still be correct but have no guarantee. As done in previous sections, we call
“expres” the former and “maybes” the latter. Unless explicitly stated otherwise, the term
“project” denotes any of the 51 experimental subjects (Section 5.4.1): one of the 5 JDK
modules or one of the 46 open-source projects we analyzed.

5.5.1 RQ1: Precision

Overall, WIT reported 30 487 expres and 31 043 maybes in 40 263 methods (24 461 methods
with some expres and 17 564 with some maybes)—out of a total of 460 032 analyzed public
methods from 59 733 classes in 51 projects.

In order to validate WIT’s feasibility check, we manually analyzed a sample of 742 expres
to determine if they are indeed correct. This sample size is sufficient to estimate precision
with up to 5% error and 99% probability with the most conservative (i.e., 50%) a priori
assumption [44]; thus, it gives our estimate good confidence without requiring an exhaustive
manual analysis [150, 210]. We applied stratified sampling to pick the 742 expres: we
randomly sampled 10 instances in each of the 49 projects where WIT detected some expres.11

This manual analysis found that all expres were indeed correct, that is 100% precision.
As we explained in Section 5.3, WIT’s maybes still have a chance of being correct excep-

tion preconditions, but they remain educated guesses in general. We randomly picked 218
maybes uniformly in the 50 projects that report some12 and manually checked them as we
did for the expres. We found that 47% (102) of them are indeed correct; thus, WIT’s preci-
sion remains high (88% = (102+ 742)/(218+ 742)) even if we consider all maybes. As we
further discuss in Section 5.5.2, in most cases, WIT could not confirm the maybes as correct
because they involve unsupported Java features (see Section 5.3.7).

Manually analyzing a significant sample of exception preconditions (expres)
confirmed that WIT is 100% precise.

5.5.2 RQ2: Recall

We compute the recall on both datasets DSC and DPA in four ways: considering only expres
or also maybes; and considering only WIT’s supported features or all Java features. Table 5.2
summarizes the results that we detail in the following.

11We pick all expres for 7 projects with less than 10 expres in total.
12To keep the manual analysis manageable, this sample size (218) is sufficient to estimate the precision of

maybes with up to 5% error and 95% probability but with a stronger (i.e., 83%) a priori assumption.

106 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

Table 5.1. Exception preconditions inferred by WIT. For each analyzed PROJECT: the short git commit
HASH; the size of the analyzed source code in thousands of lines (KLOC); WIT’s total running TIME in
minutes; the number # of inferred exception preconditions (EXPREs), the number M of methods and
constructors with some inferred exception preconditions, the precision P based on a manual analysis
of a sample, the number ?# of MAYBES exception preconditions, and the percentage ?P of these that
are correct based on a manual analysis of a sample.

EXPREs MAYBEs
PROJECT HASH KLOC TIME # M P ?# ?P

com/sun – 30 – 55 48 1.0 78 –
sun – 128 – 566 474 1.0 1 068 –
java – 209 – 3 420 2 578 1.0 1 666 –
javax – 8 – 190 145 1.0 41 –
jdk – 52 – 847 742 1.0 598 –

overall JDK da75f3c4ad5 428 765 5 078 3 987 1.0 3 451 0.36

accumulo 7db0561cac 33 311 995 908 1.0 1 335 0.3
Activiti 31024bc756 103 150 685 543 1.0 212 0.2
asm 72e8ec49 28 130 203 126 1.0 428 0.8
asterisk-java 5c56735c 30 27 27 24 1.0 46 0.4
AutomatedCar c137e56a 4 2 2 2 1.0 4 0.5
Baragon 10660b41 15 6 10 10 1.0 50 0.2
bigtop ee28ba88 6.5 4 9 9 1.0 6 0.2
byte-buddy 4c57c80aab 57 974 356 348 1.0 374 0.8
camel 0a735ae926c 972 2 626 1 558 1 276 1.0 1 111 0.4
closure-compiler fe0cebacd 287 538 158 157 1.0 654 0.2
commons-bcel f1a1459f 35 137 76 74 1.0 896 0.4
commons-configuration 1b406c17 20 12 170 139 1.0 53 0.4
commons-io 2ae025fe 9.5 23 240 187 1.0 186 0
commons-lang 90e0a9bb2 29 55 611 484 1.0 230 0.8
commons-math 674805c64 61 264 1 078 612 1.0 573 0.8
commons-text 21fc34f 10 32 235 156 1.0 138 0.6
Confucius e375cb9 0.5 1 45 18 1.0 14 0.4
curator 9aafdec9 26 35 192 116 1.0 126 0.6
dubbo b5e65a6d2 99 274 413 341 1.0 225 0.4
flink db248b2176 568 1 245 5 661 4 059 1.0 5 201 0.8
gae-java-mini-profiler 9cb1ba6 0.5 1 0 0 – 0 –
h2database 0ee51f54a 150 229 526 507 1.0 834 0.6
httpcomponents-client 29ba623eb 32 37 27 24 1.0 90 0.4
itext7 ae78654a5 145 880 681 522 1.0 702 0.7
jackrabbit 35d5732bc 260 300 1 224 1 111 1.0 1 595 0.8
jackrabbit-oak f8c7b551a4 26 334 502 493 1.0 667 0.4
jackson-databind 972d5a28a 63 57 180 166 1.0 153 0.6
jfreechart 5aac9ae4 84 133 1 387 1 149 1.0 800 1.0
jmonkeyengine 499e73ab0 19 376 634 569 1.0 1 220 0.2
joda-time 27edfffa 29 58 250 228 1.0 355 0.6
logging-log4j2 59f6848b7 99 159 472 304 1.0 392 0.2
lucene-solr 7ada4032180 685 1 545 3 380 2 755 1.0 4 132 0.6
pdfbox 01bce4dde 106 230 255 239 1.0 362 0.2
poi 270107d9e 260 403 710 624 1.0 1 851 0.2
santuario-xml-security-java 86179876 35 38 167 142 1.0 131 0.6
shiro 0c0d9da2 27 39 154 141 1.0 145 0.2
spoon 34c23fc7 75 86 272 268 1.0 357 0.4
spring-cloud-gcp 6c95a16f 20 20 13 13 1.0 10 0.8
spring-data-commons 4acd3b70 28 24 31 29 1.0 123 0.4
swingx 9e33bc0 72 108 157 149 1.0 217 0.8
traccar eac5f4889 54 60 2 2 1.0 76 0
visualee 88732d9 1.8 3 0 0 – 3 0
weiboclient4j 80556b1 7.8 10 6 6 1.0 9 0.2
wicket 7c0009c8df 109 1 069 930 811 1.0 656 0.6
wildfly-elytron 3457737d98 80 128 340 316 1.0 233 0.2
xmlgraphics-fop 7edce5dd5 165 940 385 318 1.0 617 0.6

overall other projects – 5 720 14 116 25 409 20 474 1.0 27 592 0.5

overall – 6 148 14 881 30 487 24 461 1.0 31 043 0.5

5.5 Experimental Results 107

Table 5.2. WIT’s recall using two datasets DSC and DPA (described in Section 5.4.2) as ground truth.
For each PROJECT, # is the dataset’s total number of exception preconditions (DSC) or parameter rules
(DPA); the other columns reports the percentage correctly inferred by WIT: E only considers expres,
E+M expres and maybes; ALL considers all exception items; SUPPORTED only those with features WIT

supports.

ALL SUPPORTED

DATASET PROJECT # E% E+M% E% E+M%

DSC [150] commons-io 844 9 12 57 72

DPA [207]
asm 54 6 23 25 75
commons-io 65 77 78 94 96
jfreechart 42 80 85 84 89

overall 1,345 13 23 48 84

Dataset DSc

Out of DSC [150]’s 844 manually identified exception preconditions, WIT detected 77 expres
in 6 classes of Commons IO (1 in FileNameUtils, 4 in LineIterator, 15 in IOUtils, 8 in
FileCleaningTracker, 44 in FileUtils, 3 in HexDump, and 2 in ByteOrderMark), that is a
recall of 9% (77/844). However, 708 out of DSC’s 844 exception preconditions are of kinds
unsupported by WIT (see Section 5.3.7). After excluding unsupported exception precondition
kinds,13 WIT’s recall estimate becomes 57% (77/(844− 708)).

To better understand WIT’s recall, we analyzed the 708 Commons IO exception precondi-
tions from DSC that WIT didn’t report as expres. We can classify these missed preconditions
in two groups.

Unsupported features: As mentioned, the largest group of missed preconditions (547 or
77% of the missed preconditions) involve Java language features that WIT does not
support.

Implicit exceptions: Another group of missed preconditions (161 or 23% of the missed pre-
conditions) correspond to implicit exceptions that are thrown by the Java runtime
(e.g., when a null pointer is dereferenced), which we deliberately ignore (as discussed
in Section 5.3.7). A significant case is class EndianUtils{119} for which DSC reports
48 exception preconditions involving ArrayIndexOutOfBounds or NullPointer ex-
ceptions thrown implicitly.

13Excluding unsupported annotation kinds is a common practice in the empirical evaluation of tools that infer
annotations [210].

108 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

1 static void copyToDir(File src, File destDir) {
2 if (src == null) { throw new NullPointerException(); }
3 if (src.isDirectory()) { copyDirToDir(src, destDir); }
4 else if (src.isFile()) { copyFileToDir(src, destDir); }
5 else { throw new IOException("Source does not exist"); }
6 }
7

8 static void copyDirToDir(File srcDir, File destDir) {
9 if (srcDir == null) { throw new NullPointerException(); }

10 if (srcDir.exists() && !srcDir.isDirectory())
11 { throw new IllegalArgumentException(); }
12 if (destDir == null) { throw new NullPointerException();}
13 if (destDir.exists() && !destDir.isDirectory())
14 { throw new IllegalArgumentException(); }
15 // ...
16 }

Listing 5.6. Excerpt from class FileUtils in project Commons IO.

Dataset DPa

Using 175 parameter rules14 of DPA [207]’s dataset as reference suggests that WIT’s recall
varies considerably depending on the characteristics of the analyzed project. Overall, WIT

inferred 85 matching expres and 8 matching maybes, corresponding to a recall of 49% (ex-
pres only) and 53% (expres+maybes). If we exclude the parameter rules involving features
unsupported by WIT, the recall becomes 71% (expres only) and 78% (expres+maybes). WIT

struggles the most on projects like asm, which extensively uses features and coding pat-
terns{120} that WIT currently doesn’t adequately support: as a result, WIT’s recall is fairly low
(considering all parameter rules, 6% with expres only and 23% with expres+maybes; con-
sidering only supported ones, 25%/75%). In contrast, more “traditional” Java projects like
JFreeChart{121} extensively follow programming practices such as validating a method’s in-
put, which are a better match to WIT’s current capabilities: as a result, WIT’s recall is quite
high (considering all parameter rules, 80% with expres only and 85% with expres+maybes;
considering only supported ones, 84%/89%).

WIT inferred 9–83% of the exception preconditions in Commons IO. Its recall varies
considerably (6–96%) depending on the analyzed project’s characteristics.

5.5.3 RQ3: Features

Section 5.5.2’s comparison of WIT’s preconditions with those in DSC [150]’s extensive collec-
tion confirmed what also reported by other empirical studies [20, 210]: exception precondi-
tions are often concise and structurally simple. This was also reflected in a manual sample

14The dataset contains 503 parameter rules for 9 projects; we manually analyzed 175 from projects asm,
Commons IO, and jfreechart.

5.5 Experimental Results 109

of 412 expres inferred by WIT,15 which we manually inspected to determine their features.
In terms of size, 74% of them are simple expressions without Boolean connectives &&/||;
and only 7% include more than one connective.

In terms of control-flow complexity, 68% of WIT’s expres involve exceptions that are
thrown directly by the analyzed method (as opposed to propagated from a call).

Over 70% of all expres constrain a method’s arguments (65% constraint only the argu-
ments), whereas about 24% predicate over object state. null checks are more frequent (49%
of expres), followed by value checks (40% of expres); and 81% of expres have either or both.
In contrast, query checks are considerably less frequent (11% of expres include one). These
features are a combination of the intrinsic characteristics of exception preconditions, and
WIT’s capability of detecting them. If we look at maybes, they tend to include query checks
more frequently (50%), which is to be expected since a method call can be soundly used in
a precondition only when it is provably pure (Section 5.3.6).

Up to 12% of the expres in the sample are the simplest possible Boolean expression: true.
Nine of 13 expres of spring-cloud-gcp are of this kind. These usually correspond to methods
that unconditionally throw an UnsupportedOperation exception to signal that they are ef-
fectively not available;16 see project lucene-solr’s class ResultSetImpl for an example.{123}

In Java, this is a common idiom to provide “placeholders,” which will be replaced by ac-
tual implementations through overriding in subclasses. While this is a common program-
ming pattern that leverages polymorphism, it nominally breaks behavioral substitutabil-
ity [111, 151]: a method’s precondition should only be weakened [140], but no Boolean
expression is weaker than true.

Some of the exception preconditions that we manually inspected revealed interesting
and non-trivial features. WIT could infer expres embedded in complex expressions, such as
in the case{124} of an empty string that triggers an exception in the “else” part e of a ternary
expression. c ? t : e. It also followed method calls collecting complex conditions and pre-
senting them in a readable, simplified form. For example, for a ConcurrentModification

exception,{125} or after collecting constant values from other classes.{126} We also found ex-
amples of exceptional behavior documented in Javadocs in a way that mirrors WIT’s output,
such as “IndexOutOufBoundsException if i < 0 or i > array.length”.{127} In all, WIT’s
output is often concise and to the point—and thus readable and useful.

The exception preconditions inferred by WIT are
usually succinct and mainly involve checks of method arguments.

5.5.4 RQ4: Modularity

To answer RQ4 (the impact of modular analysis), Section 5.5.4 first discusses how the output
of WIT changes when modular analysis is disabled vs. when it is enabled; then, Section 132

15A subset of the 742 expres we checked for correctness in Section 5.5.1.
16A common instance of this programming pattern occurs when implementing immutable data structures. For

example, state-modifying List interface methods such as add in class UnmodifiableList,{122} which is instan-
tiated by method unmodifiableList in java.util.Collections.

110 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

presents the results of a manual comparison of a sample of exception preconditions obtained
with and without modular analysis.

Exception Preconditions in Modular vs. Non-Modular

Table 5.3 presents the results of the comparison between WIT running with and without
modular analysis (Section 5.3.4) on five of the projects used in our experimental evaluation.

Running time. In terms of running time, modular analysis usually leads to an increase
of running time (32% longer on average); this is to be expected, since modularity generally
increases the number of paths that are analyzed by WIT, as it “extends” them with information
about methods analyzed in a different run.

Effectiveness. Modular analysis usually brings a modest (but non-trivial in absolute
numbers) increase in the number of expres reported by WIT (2% more on average). These
cases correspond to exceptional paths that include calls to external methods: in the non-
modular analysis, these paths may only lead to maybes; in contrast, in the modular analysis,
WIT has enough information to completely and correctly reconstruct the exceptional behavior
about these paths, thus reporting expres.

Modular analysis usually brings a much bigger increase in the number of maybes (156%
more on average): since maybes have no guarantee of correctness, using a maybe in a library
to reason about a call within a caller method is quite likely to determine an additional maybe
in the caller—which also may or may not be correct.

When modular analysis is counterproductive. However, modular analysis does not al-
ways lead to detecting more expres; for example, WIT reported 1–2% fewer expres in projects
jfreechart and pdfbox when enabling modular analysis. This happens because modular anal-
ysis replaces a call to an opaque method with whatever exception path WIT extracted from
the called method. In some cases, the called method’s exception precondition may be a very
partial approximation of the callee’s full exceptional behavior; therefore, using it in place
of the call may be counterproductive to obtain a provably feasible exception precondition
in the caller. In fact, this is a common problem of modular reasoning [184]: if the callee’s
specification is weak, there is very little we can conclude about the caller’s behavior.

Our manual analysis indicates that the overwhelming majority of cases where using
modular reasoning led to fewer expres involved methods calling string methods such as
String.length() and String.equals(). For example, when WIT analyzes String.equals()’s
implementation in the JDK,{128} it encounters several features and special cases that limit
its effectiveness, such as different string encodings{129} and compacted strings;{130} further-
more, the Java runtime represents a String as a byte array,{131} a type that WIT does not
currently support. As a result, WIT only reports some very narrow, overly complex exception
paths for String.equals(), corresponding to the few paths within its implementation that
do not depend on any of those complex language features. What happens when WIT processes
a method such as the one in Listing 5.7, which makes numerous calls to String.equals(),
with modular analysis enabled? Replacing the calls with the previously extracted exception
paths leads to an overly narrow, needlessly complex path condition, which bogs down the
SMT solver and does not lead to any provably feasible path in the caller. In contrast, if

5.5 Experimental Results 111

1 public void setHighlightingMode(String highlightingMode)
2 {
3 if ((highlightingMode == null) || "N".equals(highlightingMode)
4 || "I".equals(highlightingMode) || "O".equals(highlightingMode)
5 || "P".equals(highlightingMode) || "T".equals(highlightingMode))
6 {
7 this.getCOSObject().setName(COSName.H, highlightingMode);
8 }
9 else

10 {
11 throw new IllegalArgumentException("Valid values for highlighting mode are "
12 + "’N’, ’N’, ’O’, ’P’ or ’T’");
13 }
14 }

Listing 5.7. Method setHighlightingMode in class PDAAnnotationWidget of project pdfbox includes
numerous calls to JDK’s String.equals(), which complicate modular analysis.

modular analysis is disabled, WIT simply encodes the calls to String.equals() as Boolean
variables with basic constraints, which is sufficient in some cases to get to a working proof
of feasibility—and hence to an expre correctly characterizing setHighlightingMode’s{132}

exceptional path.

Correctness of Maybes in Modular vs. Non-Modular

We first sampled 30 methods where both the non-modular and modular analysis reported
some maybes, and inspected one maybe in each case (for a total of 30+30= 60 maybes). In
the non-modular analysis, 27 (90%) of the 30 maybes were correct; in the modular analysis,
16 (53%) of the 30 maybes were correct. Then, we sampled 15 other methods where only
the modular analysis reported some maybes, and inspected one maybe in each case (for a
total of 15 maybes). Only 4 (27%) of the 15 maybes were correct.

These results suggest that WIT’s modular analysis is usually less reliable at inferring (cor-
rect) maybes. This is in contrast to the inference of expres, which are correct by construction.
In all, unless one wants to maximize the output of reported maybes, it may be preferable to
only perform modular analysis for expres, excluding maybes.

This inferior performance of the non-modular analysis is usually due to complex language
features used in the JDK or other called libraries that WIT does not adequately support; in
these cases, the non-modular analysis’s approach of treating these calls as black boxes is
more likely to avoid generating incorrect maybes than the modular approach that reuses
probably inconsistent or mismatched maybes extracted when analyzing the called libraries.

Let us discuss a few concrete examples of language features that led to incorrect maybes
with the modular analysis. One is the complex behavior of floating-point arithmetic (type
Double in Java); WIT’s simple encoding of numbers cannot deal with special values such as
NaN{133} and Inf (obtained, for example, when dividing 1.0 by 0.0{134}). Another one is the
JDK’s Collections Framework, which would require a suitable (non-trivial) logic encoding in
Z3 to work in WIT.

112 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

Table 5.3. Impact of using WIT’s modular analysis (Section 5.3.4) for five PROJECTs. For each project,
we consider the same measures as Table 5.1: the overall running TIME, the number # of reported
expres , the number M of methods for which WIT reported at least one expre , and the number ?# of
reported maybes . Each column∆X reports the ratio between X measured with modular analysis and
X measured without modular analysis; for example, WIT reports 4% more expres (1.04) in project
camel when modular analysis is enabled.

EXPREs MAYBEs
PROJECT ∆TIME ∆# ∆M ∆?#

camel 1.17 1.04 1.03 3.51
commons-io 0.65 1.03 1.06 1.81
commons-lang 2.30 1.05 1.05 6.21
jfreechart 1.70 0.99 1.01 0.91
pdfox 2.67 0.98 0.97 2.71

overall 1.32 1.02 1.02 2.56

A different kind of problem occurred when analyzing data-structure methods such as
the JDK’s Stack.pop,{135} which throws an exception when the stack is empty. WIT reports
a correct exception precondition for pop; however, the precondition expression mentions
a protected field17 used in Stack’s internal representation.{136} As a result, the exception
precondition is not usable correctly to analyze clients of the Stack class, such as in one of
the maybes we inspected for project pdfbox.{137} To handle such cases [201], one could try
to convert any references to private members into calls to public getter methods—if they are
available.

It remains that WIT’s modular analysis increases the number of expres in most projects.
We found a few cases where some exception preconditions reported as maybe by the non-
modular analysis became an expre in the modular analysis. One such cases was the con-
structor of class IntersectionResult{138} in project Commons Text. As you can see in
Listing 5.8, the exception path that ends at line 10 involves a call to the JDK’s Math.min

function. Without modular analysis, WIT can only report the whole conditional expression
inters < 0 || inters > Math.min(sizeA, sizeB) as a maybe. In contrast, WIT’s mod-
ular analysis can recover Math.min’s behavior from its previous analysis of the JDK; thus, it
reports two correct expres for the same exceptional path:

• sizeB >= 0 && (inters < 0 || inters > sizeB)&& sizeB > sizeA

• sizeA >= 0 && sizeA <= sizeB (inters < 0 || inters > sizeA)

Using WIT’s modular analysis tends to moderately increase the number
of detected expres. It also usually increases the number of detected maybes,

while also lowering their correctness rate.

17Remember that WIT targets only top-level public methods, but may follow paths that go into private members.

5.5 Experimental Results 113

1 public IntersectionResult(final int sizeA, final int sizeB, final int inters) {
2 if (sizeA < 0) {
3 throw new IllegalArgumentException("Set size |A| is not positive: " + sizeA);
4 }
5 if (sizeB < 0) {
6 throw new IllegalArgumentException("Set size |B| is not positive: " + sizeB);
7 }
8 if (inters < 0 || inters > Math.min(sizeA, sizeB)) {
9 throw new

10 IllegalArgumentException("Invalid intersection of |A| and |B|: " + inters);
11 }
12 // ...

Listing 5.8. Excerpt of class IntersectionResult’s constructor in project Commons Text.

5.5.5 RQ5: Efficiency

Thanks to the heuristics it employs (Section 5.3.7) and to the nature of exception precondi-
tions WIT can infer (which tend to be simpler compared to general program behavior), WIT’s
analysis is quite lightweight and scalable. As shown in Table 5.1, its running times are gen-
erally short: it processed the entire Apache Commons Lang in just 55 minutes—17 seconds
on average for each of the project’s 200 top-level classes. It also scales well to very large
projects: it analyzed the 9 780 classes of Apache Camel (the largest project in our collection)
in 44 hours—just 16 seconds per class on average. Key to this performance is WIT’s capability
of analyzing each class in isolation, without requiring any compilation or build of the whole
project.

Take method ASMifier.appendAccess(){139} as an example of how WIT’s heuristics are
useful. It is from project ASM and embedded under the internal subdirectory of the JDK. The
method has several nested if-else branches, that lead to millions of paths. WIT’s heuristics
are crucial to avoid getting bogged down analyzing such complex pieces of code.

WIT’s analysis is lightweight: on average, it takes 15 seconds per class;
30 seconds per exception precondition.

5.5.6 RQ6: Usefulness

This section discusses to what extent WIT’s exception preconditions and the documented
exceptional behavior of methods overlap. We first look into all projects except the JDK
modules (Section 5.5.6), and then analyze the JDK separately (Section 142); finally, we
discuss how we submitted some of WIT’s inferred exception precondition as pull requests
(Section 151).

Usefulness: Regular Projects

Let us first focus on the 46 projects in Table 5.1 excluding the JDK modules. We analyzed a
subset sample of 517 expres and maybes that WIT correctly inferred for these projects; 72%

114 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

1 public static void copyURLToFile(final URL source,
2 final File destination,
3 final int connectionTimeout,
4 final int readTimeout)
5 throws IOException {
6

7 final URLConnection connection = source.openConnection();
8 connection.setConnectTimeout(connectionTimeout);
9 connection.setReadTimeout(readTimeout);

10 copyInputStreamToFile(connection.getInputStream(), destination);
11 }

Listing 5.9. Implementation of copyURLToFile() in Commons IO’s class FileUtils.

(374) of them are not documented; precisely, 242 of them belong to methods without any
Javadoc, and 120 to methods with some Javadoc that does not describe that exceptional
behavior. In contrast, 27% (138) of WIT’s exception preconditions are properly documented;
and 6% (29) of them are only partially documented (usually with a @throws Exception tag
that does not specify the conditions under which an Exception is thrown).

Scenarios (such as the one in Section 5.2.2) where a method propagates an exception
thrown by one of its callees may be hard to characterize precisely (especially when the callees’
exceptional behavior is not documented); WIT’s analysis can be particularly valuable in these
cases. Indeed, 36% (187) of WIT’s 517 exception preconditions analyzed in this section
involve nested exception preconditions; only 24% (47) of these 196 exception preconditions
are documented. This corroborates [24]’s finding that Javadocs rarely mention exceptions
thrown by called methods.

Section 5.5.2’s manual analysis of recall further surfaced evidence of WIT’s practical use-
fulness. Even though the DSC dataset (which we used as ground truth to assess recall) is
a paragon of comprehensiveness, WIT’s modular analysis still managed to detect exception
preconditions that were missed by DSC’s painstaking manual analysis. Listing 5.9 shows
Commons IO’s method FileUtils.copyURLToFile(),{140} which calls methods from JDK
class URLConnection{141},{142}. Commons IO’s documentation of this method mentions five
conditions under which the method will throw an IOException. The DSC dataset reports
another two exception preconditions that trigger implicitly a NullPointerException. How-
ever, only WIT found that that the calls to setConnectTimeout and to setReadTimeout will
throw an IllegalArgumentException if their argument is a negative integer. This is yet an-
other example that manually detecting and documenting exception preconditions is tedious,
time-consuming, and error prone; thus, the kind of automation provided by WIT can be very
useful.

Usefulness: JDK Modules

We analyze the JDK separately, since it is arguably Java’s most thoroughly documented li-
brary [95, 210]; therefore, it is natural to expect that a higher fraction of WIT’s inferred
exception preconditions will also feature in the JDK’s official Javadoc documentation.

5.5 Experimental Results 115

We analyzed a subset sample of 361 expres and maybes that WIT correctly inferred for the
JDK; 38% (136) are not documented. We also found that 48% (172) of the 358 preconditions
occur in nested calls (when an exception is propagated from a method call); and 61% (106)
of them are documented, which is significantly higher than the ratio for the other projects.

Even though the JDK’s documentation is generally outstanding, we found inconsisten-
cies in when and how it documents exceptional behavior. For example, it sometimes only
documents a subset of all possible unchecked exceptions a method may throw;{143} or occa-
sionally uses the throws keyword to declare (unchecked) runtime exceptions.{144},{145} JDK’s
package Time{146} uses a distinctly different style of documenting NullPointerExceptions,
which betrays the package’s origins as a derivative of project joda-time; to declare that
a method thows a null pointer exception when one of its parameters p is null, it writes:
@param p <description of p>, not null.{147} Incidentally, project JFreechart uses a sim-
ilar style of documentation.

Another interesting finding in the JDK is that older modules are more likely to ne-
glect using exception messages—which, however, can provide valuable debugging informa-
tion [126]. For instance, classes introduced in versions 1.0{148} and 1.1{149} seem to always
instantiate NullPointerException without arguments (i.e., no message). Despite these
outliers, the JDK generally tries to use expressive exception messages, and to improve their
clarity. For example, Integer.parseInt throws a null pointer exception with an uninfor-
mative message "null" in JDK 11;{150} in JDK 17, however, the maintainers changed it to
the more informative "Cannot parse null string".{151}

In a manually analyzed sample, 38–72% of WIT’s exception
preconditions were not documented.

Improving Project Documentation Using wit

While there may be situations where documenting every source code method is not needed
or recommended, properly documenting public methods of APIs (remember that all of WIT’s
exception preconditions refer to public methods) is an accepted best practice [150, 210].
Indeed, there is evidence that several of the projects used in our evaluation (Section 5.4.1)
routinely improve their Javadoc documentation of exceptions,{152},{153} and often recom-
mend{154} or even require{155},{156} accurate Javadocs in any code contributions. To de-
termine whether WIT’s inferred preconditions can be a valuable source of API documen-
tation, we collected 90 exception preconditions extracted by WIT in 5 Apache projects and
submitted them as 8 pull requests (as described in Section 5.4.2). At the time of writing,
maintainers accepted (without modifications) 6 pull requests containing 81 preconditions—
63 (78%) of them occurring in nested calls. Two pull requests to project Commons Math
have not been reviewed yet. Interestingly, one to project Commons Lang was on hold for
several months because the project maintainers realized that the 10 methods whose ex-
ceptional behavior we document are inconsistent in using IllegalArgumentException vs.
NullPointerException, and they preferred to fix this inconsistency before updating the
documentation.

116 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

When submitting our improvements to project Commons Lang, we opened a JIRA is-
sue{157} sharing our findings. Several months after our initial pull request, a GitHub user
submitted four Javadoc modifications in a new pull request{158} that mentioned our JIRA
issue. Shortly afterwards, a Commons Lang maintainer asked us to review the modifications
in the new pull request, and suggested that we submit all our findings (i.e., all the exception
preconditions that could be included in the documentation) in order to close the JIRA issue.
In the end, we worked together with the author of the latest pull request to submit 89 WIT

exception preconditions (27 new pieces of Javadoc documentation and 62 fixing existing
documentation), as well as tests for 9 classes. All of the exceptions from the additions and
fixes occur in nested calls, which may explain why they went undetected for a long time.
The pull request was accepted in the same day and merged ten days later.

Overall, our 9 pull requests (8 initial ones, plus the latest one suggested by the maintain-
ers) include 189 exception preconditions (90 in the initial batch, and 89 in the latest one).
These pull requests contain 157 (88%) preconditions occurring in nested calls; 61 (34%)
that refer to missing documentation, and 118 (66%) that target a wrongly documented ex-
ception. A total of 170 preconditions (81 in the initial batch, and 89 in the latest one—or
95% of all those submitted) were merged into the projects’ official documentation. It is sig-
nificant that the projects that accepted these pull requests are known for their extensive and
thorough documentation practices [150, 207]. The fact that WIT could automatically detect
several exception preconditions that were missing from their documentation, and promptly
added following our pull requests,18 indicates that WIT’s output can be quite useful. We
expect that WIT’s precise output can have an even bigger impact on scarcely documented
projects.

WIT’s precise exception preconditions can be useful to improve also large
and mature projects: maintainers from 4 Apache projects accepted
95% of a sample of WIT preconditions submitted as pull requests.

5.6 Threats to Validity

The main threat to the internal validity of our assessment of WIT’s precision (Section 5.5.1)
comes from the fact that it is based on manual inspection of Java code and documentation.
Like all manual analyses, we cannot guarantee that no mistakes were made. Nevertheless,
various evidence corroborates the claim that WIT’s precision is high. First, WIT’s precision
follows from its design; therefore, the manual analysis was primarily a validation of WIT’s
implementation, checking that no unexpected source of incorrectness occurred in practice.
Second, we inspected not only the source code but also any official documentation, tests,
as well as the datasets of related studies of Java exceptions [126, 150]. Third, the authors
extensively discussed together the few non-obvious cases, and were as conservative as possi-
ble in the assessment. We followed similar precautions to mitigate threats to our assessment
of WIT’s recall (Section 5.5.2), where we relied on [150]’s and [207]’s manual analyses as
ground truth.

18One maintainer from Accumulo remarked that ours “are nice fixes to the javadoc, thanks for finding them.”

5.7 Discussion of Applications 117

1 * @throws IllegalArgumentException if {@code src} is empty,
2 * {@code src.length > 8} or {@code src.length - srcPos < 4}
3 * @throws NullPointerException if {@code src} is {@code null}
4 */
5 static char binaryToHexDigitMsb0_4bits(boolean[] src, int srcPos) {
6 if (src.length > 8) {
7 throw new IllegalArgumentException("src.length > 8");
8 }
9 if (src.length - srcPos < 4) {

10 throw new IllegalArgumentException("src.length - srcPos < 4");
11 }
12 if (src[srcPos + 3]) {
13 // ...

Listing 5.10. Excerpt of a method and its Javadoc from class Conversion{160} in project Commons
Lang.

As customary [210], we assume that the implementations of all analyzed methods are
correct: WIT’s goal is to capture an implementation’s exceptional behavior as faithfully as
possible; detecting bugs in such implementations is out of its (current) scope.

Our selection of 46 Java projects includes several very popular Java open source libraries,
which were used in recent related work, and in addition several modules in Java’s official
JDK; this helps reduce threats to external validity. It remains that the exceptional behavior
of libraries may be different than that of other kinds of projects. Since library APIs tend to
perform more input validity checks [169], it is possible that WIT would report fewer exception
preconditions simply because fewer are present in other kinds of software. Indeed, a handful
of the projects with the smallest number of reported expres turned out not to be libraries
(see Table 5.1).

As one of the ground truths to estimate recall, we used a recent survey [150] that ex-
tensively manually analyzed a single project (Commons IO). As we discuss in Section 5.5.2,
the nature of this project makes it especially challenging for WIT, which implies that its re-
call may be higher on other projects (as the experiments using the other dataset DPA [207]
suggest).

WIT’s implementation has a number of limitations; some reflect deliberate trade-offs,
while others could simply be removed by extending its implementation. In its current state,
WIT has demonstrated to produce useful output and to be precise and scalable.

5.7 Discussion of Applications

This section outlines possible applications of WIT’s technique that take advantage of its char-
acteristics. WIT’s precision is especially handy when generating documentation (discussed in
Section 5.7.1) or tests (Section 5.7.2). WIT’s other key feature (that it’s lightweight) helps
apply it to different scenarios. For research in mining software repositories, not requiring
complete project builds enables scaling analyses to a very large number (e.g., several thou-
sands) of projects—whereas building all of them would be infeasible [80]. Using WIT as

118 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

a component of a recommender system that runs in real-time is another scenario where
speed/scalability would be of the essence.

5.7.1 Documentation

As we demonstrated in Section 151, the output of WIT’s analysis can be useful to extend,
complement, and revise the documentation of public methods’ exceptional behavior. Accu-
rately documenting exceptions is crucial for developers [210], but writing documentation
is onerous [150, 151]; as a result, APIs often lack documentation [169], especially for ex-
ceptions [24]. WIT’s high precision ensures that its output can generally be trusted without
requiring manual validation, and hence it can directly help the job of developers writing
documentation (or tests).

In most cases, WIT’s exception preconditions are in a form that can be easily transformed
into method documentation—for example by expressing them in natural language using pat-
tern matching [20, 75, 210]. In fact, since it uses precise static analysis, we found several
cases where WIT’s exception preconditions provide more rigorous information than what
is available in programmer-written documentation. For example, Listing 5.10 shows the
programmer-written exceptional behavior documentation and the initial part of the imple-
mentation of a method from class Conversion in project Apache Commons Lang. WIT outputs
two exception preconditions for the method:

src.length > 8 (5.1)

src.length <= 8 && srcPos - src.length > -4 (5.2)

both corresponding to an IllegalArgument exception. At first sight, it may seem that
WIT’s output is incomplete (it doesn’t mention the preconditions “src is empty” and “src
is null” in the Javadoc) and needlessly verbose (isn’t src.length <= 8 redundant?). A
closer look, however, reveals that several aspects of the natural-language documentation are
questionable or inconsistent. First, it mixes explicitly and implicitly thrown exceptions: a
NullPointer exception is thrown by the Java runtime when evaluating the expression on
line 6, not by the method’s implementation. WIT ignores such language-level exceptions by
design; as we mentioned in Section 5.3.7, not including implicit exceptions in API docu-
mentation may be preferable [24, 66]. A second issue with Listing 5.10’s documentation is
that it is incorrect: if src is empty, the method does not throw an IllegalArgument excep-
tion; instead, the Java runtime throws an IndexOutOfBounds exception at line 12 (another
system-level implicit exception). Finally, Listing 5.10’s documentation is inconsistent regard-
ing the order in which the various exception preconditions are checked: whether src is null
is checked first (implicitly), then src.length > 8 (explicitly), src.length - srcPos < 4

(explicitly), and whether src is empty (implicitly)—in this order. Thus, src.length <= 8 in
WIT’s second inferred preconditions is not redundant but rather useful to ensure that the pre-
condition precisely captures the conditions under which a certain path is taken. Admittedly,
WIT may sometimes present preconditions in a form that is harder to understand for a human;
for example, it is questionable that the “simplification” of src.length - srcPos < 4 into
srcPos - src.length > -4 improves readability. However, these are just pretty-printing

5.7 Discussion of Applications 119

1 Fraction getFraction(final int whole, final int num, final int den) {
2 if (den == 0) throw new ArithmeticException("The denominator must not be zero");
3 if (den < 0) throw new ArithmeticException("The denominator must not be negative");
4 if (num < 0) throw new ArithmeticException("The numerator must not be negative");
5 final long nv;
6 if (whole < 0) { nv = whole * (long) den - num; }
7 else { nv = whole * (long) den + num; }
8 if (nv < Integer.MIN_VALUE || nv > Integer.MAX_VALUE)
9 throw new ArithmeticException("Numerator too large to represent as an Integer.");

10 // ...
11 }

Listing 5.11. Simplified excerpt of method Fraction.getFraction from in project Commons Lang.

details that are currently left to SymPy; changing them to generate constraints that follow
certain preferred templates could be done following Nguyen et al.’s [151] approach. In fact,
one could even let the user decide the output format according to their preference. Overall,
this example demonstrates that WIT’s output often has all the information needed to generate
accurate documentation that avoids ambiguities or other inconsistencies.

5.7.2 Generating Tests

Automatically generating tests that exercise a method’s exceptional behavior is another natu-
ral applications of WIT. Fully pursuing it is outside this work’s scope; nevertheless, we briefly
discuss this directions on a few concrete examples that we encountered while carrying out
Section 5.4’s empirical evaluation.

As mentioned in Section 5.3, each exception precondition reported by WIT also comes
with an example of inputs that satisfy it; for instance, for exception precondition (5.2), WIT

outputs the example [src.length=2, srcPos=0]. Writing a test that initializes an array
with two elements, calls the method in Listing 5.10, and checks that an IllegalArgumentException

is thrown (and that it contains a specific message) is straightforward. In fact, one could even
try to automate the generation of tests and oracles from WIT’s examples and preconditions.
For example, using property-based testing [36]: after expressing (5.2) (or even the specific
example) as an input property, let a tool like jqwik{161} randomly generate inputs that satisfy
it.

The information captured by WIT can support increasing the level of automation and gen-
erally make programmers more productive. It can also improve the quality of the tests that
are written, as demonstrated by the following example. Listing 5.11 shows a (simplified)
excerpt of method Fraction.getFraction in Apache Commons Lang, which takes three inte-
gers whole, num, den, and returns an object representing the fraction whole+num/den. As we
can see in Listing 5.11, getFraction has 4 exception preconditions: (a) (line 2) when den

is 0; (b) (line 3) when den is negative; (c) (line 4) when num is negative; (d) (line 8) when
the resulting numerator nv exceeds the largest integer in absolute value. Commons Lang is
a thoroughly tested project [150], and in fact all four exceptional behaviors are tested.{162}

The 4 behaviors are not evenly tested though: 3 calls cover (a), 6 calls cover (b) (including

120 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

1 * @throws StringIndexOutOfBoundsException if {@code offset} is not in the
2 * range {@code 0 <= offset <= chars.length}
3 * @throws StringIndexOutOfBoundsException if {@code length < 0}
4 * @throws StringIndexOutOfBoundsException if {@code offset + length > chars.length}

Listing 5.12. Documentation of StringSubstitutor.replace() submitted as pull request in project
Commons Text.

three identical calls, which is likely a copy-paste error), 1 call covers (c), and 4 calls cover
(d). Comments in the test method which refer to the four categories are sometimes mis-
placed (for example, two calls under “zero denominator” actually cover (d)). In contrast,
WIT’s example inputs correspond one-to-one and uniquely to each exception precondition:
(a) den=0; (b) den=-1; (c) num=-1, den=1; (d) whole=2147483648, num=0, den=1. If we
wanted multiple example inputs for the same precondition, we could just ask Z3 to gener-
ate more. In all, WIT’s output can be quite useful to guide a systematic test-case generation
process.

Another situation where WIT’s output helps write tests that exercise exceptional behav-
ior is when this requires a combination of inputs for different arguments. One example is
Commons Text’s method FormattableUtils.append(),{163} which takes 6 arguments and
comes from Java’s Formatter interface.{164} FormattableUtils.append()’s exception pre-
condition involves the negation of a disjunction of three Boolean predicates:
!(e == null || p < 0 || e.length()<= p). WIT suggests an input where e.length()

is 1, and p is 0, which is easy to implement as a test. Another example is method
StringSubstitutor.replace(){165} in the same project, which takes three arguments (one
character array and two integers) and may throw an exception in a nested call. As regularly
seen in Apache Commons projects, the method accepts null or empty arrays; however, when
the array is non-null, the exception precondition gets quite complex. WIT provides exception
triggering inputs for the three arguments, including that the character array must not be null
and could be empty. In cases like this, we could reuse parts of WIT’s extracted precondition
to document the complex exception condition. The complexity of the precondition, together
with it being in a nested call, may be the reason why the documentation and tests were
missing in the project.

5.8 Conclusions

We presented WIT: a static analysis technique to extract exception preconditions of Java
methods. WIT focuses on precision: it only reports correct preconditions.

An evaluation on 46 open-source Java libraries and five JDK 11 modules demonstrated
also that it is lightweight (under two seconds per analyzed public method on average),
precise (all inferred preconditions are correct), and can recover a significant fraction of
the known exception preconditions (9–83% of the supported exception preconditions us-
ing [150]’s manual analysis as ground truth).

While the exception preconditions detected by WIT tend to be syntactically simple, they

5.8 Conclusions 121

often complement the available documentation of a method’s exceptional behavior, as we
demonstrated by merging a selection of 170 inferred exception precondition as pull requests
in the projects’ open source repositories.

In order to combine scalability and applicability, WIT can perform a modular analysis:
after inferring the exception preconditions of a project A, it can use them to analyze the be-
havior of another project B whenever it calls out to any methods in A. Our empirical analysis
suggested that modular analysis is a bit of a mixed bag: it does increase the number of ex-
ception precondition WIT can detect, but it may also decrease the precision for the so-called
“maybes”—exception preconditions that are reported separately, as WIT could not conclu-
sively establish that they are correct. Accordingly, WIT can be configured to use modular
analysis selectively, according to what is the main goal of its users. Investigating heuristics
to help the automatic selection of these configuration options is an interesting direction for
future work.

Artifacts: the complete artifacts to support the replication of our experiments are avail-
able: https://doi.org/10.6084/m9.figshare.22217014.

https://doi.org/10.6084/m9.figshare.22217014

122 Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods

6
Towards Code Improvements Suggestions from
Client Exception Analysis

Modern software development heavily relies on reusing third-party libraries; this makes de-
velopers more productive, but may also lead to misuses or other kinds of design issues. In
this chapter, we focus on the exceptional behavior of library methods, and propose to de-
tect client code that may trigger such exceptional behavior. As we demonstrate on several
examples of open-source projects, exceptional behavior in clients often naturally suggests
improvements to the documentation, tests, runtime checks, and annotations of the clients.

In order to automatically detect client calls that may trigger exceptional behavior in library
methods, we show how to repurpose existing techniques to extract a method’s exception
precondition—the condition under which the method throws an exception. To demonstrate
the feasibility of our approach, we applied it to 1,523 open-source Java projects, where it
found 4,115 cases of calls to library methods that may result in an exception. We manually
analyzed 100 of these cases, confirming that the approach is capable of uncovering several
interesting opportunities for code improvements.

Structure of the Chapter

• Section 6.1 provides motivation for this chapter.

• Section 6.2 describes our approach.

• Section 6.3 describes our preliminary experiments.

• Section 6.4 draws our conclusions and outlines ideas for future work.

6.1 Introduction

Any piece of client code that calls a library method must comply with the method’s precondi-
tion. Thus, analyzing method calls against the callees’ preconditions can reveal issues with
how a library is used, and possibly suggest useful improvements to the client code.

123

124 Towards Code Improvements Suggestions from Client Exception Analysis

A widespread scenario occurs when a library method may throw an exception; for exam-
ple, to signal that one of its arguments should not be null. If we can show that a client never
calls the method with a null argument, or suitably handles the exception (for example, with
a try/catch block), we rule out a certain category of faults. Conversely, if we find a concrete
client execution where the exception is raised and not handled, this suggests a number of
improvements to the client code, such as adding tests or documentation for this possible ex-
ceptional behavior, or perhaps modifying the client so that it handles the exception directly.
As we discuss in Section 6.2 on concrete examples of Java code, such scenarios of client
code calling library methods that may throw exceptions are quite common in open-source
projects; analyzing them systematically (and automatically) has the potential of revealing
interesting instances of misuses and critical cases, as well as of suggesting ways of improving
the client code to address the issues.

Unfortunately, there are two main obstacles that stand in the way of practically pursu-
ing this idea of analyzing exception preconditions of library methods in client code to suggest
code improvements to the client. First, (exception) preconditions are often documented only
informally (e.g., using natural-language comments) and partially [96, 173]. Second, even if
we have a formula precisely expressing a library method’s exception precondition, determin-
ing whether a call to the method may actually raise an exception requires precise reasoning
about the client code (for example, through symbolic execution), which remains challenging
to carry out on code bases of realistic size and complexity.

We discuss a practical approach that can deal with these two difficulties. To this end, it
leverages recent work on automatically extracting exception preconditions in a way that is
scalable (applicable to realistic projects) and precise (always returns correct exception pre-
conditions) [127, 152, 201]; most notably, this includes our work on WIT, which we presented
in Chapter 5. Running these tools on widely used Java libraries and frameworks (including
a substantial portion of the JDK) populates a database of exception precondition Boolean
formulas, which precisely indicate under what conditions calling a certain library method
results in an exception. To pursue our approach, we then discuss how to repurpose these
existing detection techniques so that they can run on client code and find feasible matches of
any exception preconditions in their database; in other words, they detect calls to any of the
methods with an exception precondition that may result in an exception being thrown.

Section 6.3 describes preliminary experiments that we conducted to assess the practical
feasibility of our approach. Among the aforementioned tools for exception precondition de-
tection we used WIT [127] for our experiments. First, we selected 1,523 open-source Java
projects that use some of the libraries that can be analyzed with WIT. Then, we modified
WIT to detect feasible matches of exception preconditions—that is, possible exceptional be-
havior in the clients—and ran it on the selected projects. We found 4,115 such matches,
which indicates that our analysis is widely applicable. We also manually analyzed a ran-
dom sample of 100 matches, in order to better understand what kinds of issues the matches
reveal, and how they could be turned into actionable suggestions for improvements to the
client code, its tests, or its documentation. We report several concrete examples taken from
open-source Java projects, which lend weight to this chapter’s core idea: identifying possi-
ble improvements to client code by automatically analyzing the exception preconditions of

6.2 From Exception Preconditions to Code Improvements 125

1 // @throws IllegalArgumentException if bound is not positive
2 public int nextInt(int bound) {
3 if (bound <= 0) throw
4 new IllegalArgumentException("bound must be positive");
5 // ...
6 }

Listing 6.1. Documentation of java.util.Random.nextInt(int).

1 public static int random(final int min, final int max) {
2 return Utils.RANDOM.nextInt(max - min) + min;
3 }

Listing 6.2. Client code calling Listing 6.1’s method.

library methods.
While there is plenty of related work about analyzing exceptional behavior and detecting

API misuses, the combination of the two concepts has hardly systematically been explored.

6.2 From Exception Preconditions to Code Improvements

Our main idea is an approach to automatically analyze client code for potential throws of
exceptions in library methods. Precisely, a method m’s exception precondition is a Boolean
condition Pm under which the method terminates with an exception. Conversely, a potential
throw (“pothrow” for short) is a piece of client code with a call to m whose actual arguments
may match m’s exception precondition Pm, and that does not handle the corresponding ex-
ception. Potential throws point to client code that may not fully conform to the library’s
(exceptional) specification—a possible case of design issues or even misuses. Section 6.3
describes some experiments supporting our hypothesis that pothrows in real projects can
indeed suggest code improvements and refactoring. The rest of this section outlines an ap-
proach to detect pothrows automatically.

6.2.1 An Example of Potential Throw Detection

Listing 6.1 shows Java’s java.util.Random.nextInt(int),{166} a library method that throws
an IllegalArgumentException (IAE) if its argument is strictly less than one. Even a basic
exception precondition like nextInt’s (explicitly documented in the method’s Javadoc natu-
ral language documentation) may be non-trivial to handle properly for clients. For example,
consider method random in project Zelix Injection;{167} as shown in Listing 6.2, random is a
pothrow of nextInt: if max ≤ min, the call to nextInt fails with an uncaught IAE whose
error message is not very informative in the client’s context.

126 Towards Code Improvements Suggestions from Client Exception Analysis

1 // @throws IllegalArgumentException if @code\{max <= min\}

2 public static int random(final int min,

3 @Refinement ("max > min") final int max) {

4 Validate.isTrue (max > min, "max <= min");

5 return Utils.RANDOM.nextInt(max - min) + min;
6 }
7

8 @Test

9 void random_throws_IAE() {
10 assertThrows(IllegalArgumentException.class,
11 () -> Utils.random(1, 1);
12 // ... other cases
13 }

Listing 6.3. Possible improvements to Listing 6.2’s code (in color).

6.2.2 Code Improvements

Even though code including potential throws might be perfectly correct, more commonly
it indicates possible design issues, which, in turn, may suggest improvements to the code,
its documentation, or its tests that increase its quality for its own clients and for the whole
project. In fact, there is evidence that exceptional behavior is often insufficiently documented
and tested even within a project [126, 207]; the same issues are likely to intensify when
considering a project’s clients.

Listing 6.3 shows four possible improvements for Listing 6.2’s pothrow. Documenting the
derived exception precondition of random with a @throws tag helps its users know when to

expect an exception. Argument checking (using Validate.isTrue in Listing 6.3) performs
a runtime check that random’s actual arguments will not trigger an exception; this follows
the fail fast principle, signaling precisely the condition and location of the exception when
one occurs. Extended type annotations (using Liquid Java’s @Refinement annotation in
Listing 6.3) go one step further as they support checking for possible exceptional behavior
at compile time using tools such as the Checker Framework [158] and Liquid-Java [69].
Providing tests that exercise exceptional behavior (through JUnit’s @Test in Listing 6.3)
also helps code quality, as it provides means to detect possible regressions, and serves as a
concrete counterpart to the method’s documentation.

6.2.3 Detecting Potential Throws Automatically

In order to automatically find instances of pothrows, we propose an approach in three steps.
First, we collect exception preconditions of library methods; to this end, we can use any
recently developed static techniques [127, 152, 201] that are applicable to realistic projects
and return correct exception preconditions (if the preconditions may be incorrect, the whole
analysis would become noisy and imprecise).

6.3 Experimental Evaluation 127

Second, we analyze clients of the libraries, looking for calls to any of the library meth-
ods for which exception preconditions are available. Ideally, this step would be performed
without fully building the client code, so that the analysis is more lightweight and can also
target parts of a project. Here too, we privilege precision (every match is a real match) over
recall (all possible matches are detected).

Third, we determine whether the arguments of any calls identified in the previous step
may actually satisfy any of the available exception preconditions. This amounts to a feasibility
check that finds a condition over the client’s arguments (such as max≤ min in Listing 6.2) that
triggers the exception. In general, the feasibility check requires precisely reasoning about
client code at its call locations. For example, if method random in Listing 6.2 called nextInt

with argument 1 + Math.max(min, max)- Math.min(min, max), it should recognize that
this expression is always positive, and hence nextInt will not throw. The feasibility checks
should be precise as well (since we do not want to report many false alarms), but they
should also achieve a reasonable recall—otherwise, the analysis would produce hardly any
output. To perform the feasibility check, we encode it as a modular variant of the same
exception precondition detection performed in the first step: given a piece c of client code
calling library method m, determine c’s exception precondition using m’s. Any such exception
preconditions of c are reported as pothrows.

6.3 Experimental Evaluation

In this section, we first discuss our prototype implementation of our approach to detect
potential throws of library exceptions in client code (Section 6.3.1); then, we present the
design (Section 6.3.2) and quantitative results (Section 6.3.3) of an empirical evaluation on
several open-source Java projects; finally, we discuss several interesting cases that emerged
in these experiments, which we manually inspected to validate the approach and to illustrate
its practical usefulness (Section 6.3.4).

6.3.1 Potential Throw Detector Implementation

Among the available techniques for exception precondition detection, we used WIT [127] as
the basis for our implementation. When run on a library, WIT returns two kinds of excep-
tion preconditions—called expres and maybes in [127]. For our work, we only consider the
former, which pass a path feasibility check, and hence are correct by construction.

First, we added support to store in a database the exception precondition WIT collects
over multiple runs, so that they can be queried by library and method signature. Second,
we wrote a simple program that uses JavaParser{168} to scan through a project and resolve
the fully qualified names of any called library methods, and then searches the database of
exception precondition for any match of these called methods. Third, we modified WIT so
that it analyzes any enclosing method in the client that includes a call to one of the matching
library methods; WIT determines whether the callee’s exception can be propagated to the
caller (the client) and under which conditions; in other words, it reports potential throws

128 Towards Code Improvements Suggestions from Client Exception Analysis

(pothrows) in the client. Again, we enable WIT’s feasibility checks, so that it only reports
pothrows that are indeed feasible.

6.3.2 Empirical Study: Design

We ran an empirical study to confirm that our approach is applicable to realistic projects,
that it can identify a significant number of pothrows, and that several of these pothrows are
indicative of design issues—and potential code improvements.

First, we selected 21 widely used open-source Java libraries including 6 analyzed in
WIT’s original work [127] (joda-time, and Apache Commons Lang, IO, Text, Configuration, and
Math), as well as 15 new ones (Java 11’s1 JDK, Apache Commons Codec and Collections,
Eclipse Collections, ehcache3, gson, Guava, hibernate-orm, jaxb-ri, jsoup, retrofit, and Spring
boot, data-jpa, framework, and security).

We also selected several client projects from two different sources. Using the GHS search
tool [42], we gathered 1,312 Java (non-fork) projects on GitHub with at least 10 stars and
a thousand lines of code. We did not perform any a priori check that these projects use any
of the 21 libraries we considered; however, it’s overwhelmingly likely that these projects at
least use some JDK library classes (e.g., String). To further increase the diversity of client
projects, we also gathered another 220 client projects from the DUETS dataset [57], which
consists of library/client pairs among Java open source projects developed with Maven; we
specifically collected all client projects that use the latest version of joda-time, jsoup, and all
Apache Commons projects we analyzed. In the following, GHS denotes the first batch of
1,312 projects, and DUETS the second batch of 220 projects.

Finally, we selected 100 pothrows among those reported in all projects and analyzed
them manually. This sample of pothrows corresponds to 2.5% of all the 4,115 pothrows
reported by our tool (see Section 6.3.3). This is a reasonable sample size for an exploratory
study, given that manual checks like this can be very time-consuming [127, 150]: they took
the first author more than eight hours. We sampled opportunistically, trying to cover several
different libraries, called methods, and library projects. The manual analysis was, first of all,
a sanity check to confirm that the pothrows are correct (i.e., they identify method calls that
may throw an exception). Most of the times, confirming the correctness of a pothrow was
straightforward (e.g., a possible null argument), and required only a cursory analysis of the
call context. For more complex cases (e.g., a call to StringBuilder.append{169} in project
feathersui-starling-sdk{170} with arguments empty array, 2, and -1 throws an
IndexOutOFBoundsException), we inspected the code more extensively using jshell.{171}

After the sanity checks, we also thought about what kinds of code improvements the manu-
ally analyzed pothrows suggest; Section 6.3.4 presents a few selected interesting examples.

6.3.3 Empirical Study: Quantitative Results

Running WIT on the 21 selected libraries populated our database with 14,180 exception
preconditions of 10,204 public library methods. The analysis of the 1,312 GHS client projects

1We focus on Java 11 because it’s the latest Java LTS version that JavaParser fully supports.

6.3 Experimental Evaluation 129

found 106,345 calls to 1,961 of the analyzed library methods. The analysis of the 220 DUETS
client projects found 28,324 calls to 806 of the analyzed library methods. Overall, we found
134,579 calls matching 1,961 of the analyzed library methods (i.e., the called methods in the
DUETS batch are a subset of the called methods in the GHS batch). Running our modified
version of WIT on the code snippets surrounding each of these 134,579 client calls identified
4,115 pothrows (2,885 in the GHS projects and 1,260 in the DUETS projects)—around 3%
of the client calls. We confirmed that all the 100 pothrows we manually analyzed were
correctly identified by the tool.

We can think of a possible explanation for why only a fraction of all matching calls are
pothrows. Precondition inference techniques like WIT trade off recall for precision [127];
in our experiments, the modified WIT only reports a call as pothrow if it can conclusively
establish that the call is feasible, which may miss some real instances. (In fact, its original
evaluation [127] indicates that WIT’s recall can dip below 10% on some projects.) Regardless,
it is also reasonable to expect that a large fraction of library method calls are set up by the
client to comply with the library’s preconditions or are within a try block—and thus, they
never result in an exception.

Table 6.1 gives an overview of ten of the most frequently called library methods among
those we considered in our experiments; all of them are to JDK methods. In fact, it is clear
that JDK methods dominate both the matching calls and the pothrows: overall, only 4.7%
(6,371) of all calls, and 9.5% (387) of all pothrows refer to methods in libraries other than
the JDK. Even though the DUETS projects should focus on non-JDK libraries, they still use
plenty of JDK libraries: among DUETS projects, 96% (27,092) of calls, and 92% (1,164) of
pothrows, refer to some of 614 JDK library methods; among GHS projects, 95% (101,206)
of calls, and 90% (2,564) of pothrows, refer to some of 1,758 JDK library methods. Overall,
the 6,371 calls and 387 pothrows involve only 1,007 non-JDK library methods; just three of
these libraries (Apache Commons Lang, Guava, and Spring framework) account for 998 calls
and 93 pothrows of 29 argument-checking library methods.

In hindsight, JDK’s dominance is not surprising. First, virtually every project—even if it
uses other common libraries—is a client of the JDK. Second, just because a project declares
a certain library as a dependency does not mean that it uses it extensively; in fact, it may
not use it at all: Harrand et al.’s empirical study [78] found that 41% of declared project
dependencies do not correspond to any API usages at the bytecode-level. The study also
found that, for more than half of the 94 analyzed libraries, 75% of the clients use only
12% of the libraries’ methods; thus, expecting a much larger number of pothrows in our
experiments is unrealistic.

6.3.4 Empirical Study: Qualitative Discussion

Examples of Potential Throws

java.util.ArrayList’s constructor throws an IllegalArgumentException if the given ini-
tial capacity is a negative number. As shown in Table 6.1, calls to this method are common
in our client projects; 140 of them are pothrows, which happen when the actual argument
is an expression that may be negative. (None of these pothrows is a sure bug, i.e., none

130 Towards Code Improvements Suggestions from Client Exception Analysis

Table 6.1. Ten of the most widely called library methods in our experiments. For each LIBRARY

METHOD, the table reports the number of CLIENT projects with at least one call to the method, the total
number of CALLS to the method, and how many of the calls are POTHROWS (potentially throwing).

LIBRARY METHOD CLIENTS CALLS POTHROWS

ArrayList.ArrayList(int) 351 3 446 140
ArrayList.get(int) 333 8 538 11
File.File(String) 610 7 597 660
Integer.parseInt(String) 589 7 359 62
Objects.requireNonNull(T) 156 2 292 832
Objects.requireNonNull(T, String) 89 1 002 643
Optional.of(T) 166 1 234 36
Random.nextInt(int) 296 2 769 38
String.substring(int) 640 6 285 12
String.String(char[], int, int) 81 304 60

1 // @throws IllegalArgumentException if there are
2 // more columns requested than the dimension
3 public static List<Vector> getBasis(int dim, int nCols) {
4 if (dim < nCols)
5 throw new IllegalArgumentException(msg);
6 List<Vector> basis = new ArrayList<Vector>(nCols);
7 // ...
8 }

Listing 6.4. Pothrow call to ArrayList’s constructor.

of them passes a negative literal to ArrayList.) Listing 6.4 shows an interesting case from
project SuanShu, involving two arguments of public static method getBasis.{172} The client
method first checks the precondition dim ≥ nCols, and then calls ArrayList’s constructor
with argument nCols; thus, if dim < 0, the constructor’s exception will propagate to the
client. Perhaps dim, which should denote a dimension, is supposed to always be a nonnega-
tive number; if this is the case, project SuanShu could benefit from making this assumption
explicit using a combination of the code improvements outlined in Section 6.2: adding doc-
umentation, argument checking, extended type annotations, and tests to boot.

Here is another piece of evidence in support of our hypothesis that automatically ana-
lyzing potential throws can reveal subtle semantic differences between different clients and
libraries. The constructor of LinkedBlockingDeque,{173} another java.util data structure,
throws an exception if its initial capacity argument is negative or zero. Indeed, we found
two pothrow calls that may violate this constraint in our analyzed projects.{174},{175} Interest-
ingly, whereas LinkedBlockingDeque implements interface Deque, other implementations
of the same interface may have different exception preconditions; for example, ArrayDeque
robustly accepts any value as initial capacity, and simply resets it to one if given a zero or

6.3 Experimental Evaluation 131

1 // @param title the chart title ({@code null} permitted).
2 // @param plot the plot ({@code null} not permitted).
3 public JFreeChart(String title, Plot plot) {
4 // ...
5 }

Listing 6.5. The signature and header comment of JFreeChart’s constructor in client project
JFreeChart.

1 private void add(String key, String value) {
2 properties.setProperty(key, value);
3 }

Listing 6.6. Private method calling JDK’s Properties.setProperty.

negative number.{176} Thus, its clients cannot incur any pothrow when constructing instances
of ArrayDeque.

It is well known that null pointer derefencing—signaled by NullPointerException

(NPE) in Java—is a widespread problem in programming languages where they can hap-
pen [82]—and one that prompted numerous attempts at mitigating it [55].{177} Analyzing
some of the numerous instances of pothrows that may result in a NPE, we realized that the
problem is compounded when null is a perfectly valid value for some arguments but not
for others. Take the constructor of class JFreeChart{178} from the homonymous project,
whose signature is shown in Listing 6.5: argument title may be null (denoting an empty
title), whereas argument plot results, through an indirect check, in a IAE if it is null. This
instance of pothrow is already explicitly documented in JFreeChart’s constructor; but it
still highlights the usefulness of an automated analysis that can follow third-party library
dependencies and disentangle different valid usages of a method.

Besides, not all methods are as accurately documented as Listing 6.5’s constructor. Con-
sider, for example, method Properties.setProperty(String, String){179} in JDK’s pack-
age java.util, which throws a NPE if any of its two arguments is null. Despite being widely
used (we found 1,545 calls to it in our projects), method setProperty’s documentation does
not mention its exception precondition. In fact, we found 12 pothrows that involve calls to
setProperty. Listing 6.6 shows one of these cases from project javapos_shtrih: a wrapper of
setProperty,{180} which thus has the same exception precondition as pothrow. If we want
to think about possible code improvements in this case, it is important to notice that add is

1 private static CacheStatus getCacheStatus(
2 @NonNull LibraryCachingConfiguration cachingConfiguration,
3 @NonNull final FilePath versionCacheDir) {
4 // ...
5 }

Listing 6.7. An example of a private method annotated with @NonNull.

132 Towards Code Improvements Suggestions from Client Exception Analysis

private. While it might be called with a null argument, all its calls within the project sup-
ply non-null arguments; the project developers may have certain guidelines on how (and
if) such cases need documentation or other kinds of annotations. In general, however, ex-
tended type checking annotations are often applied to private methods as well—for the few
projects that make the effort of producing and maintaining such annotations; for example,
Listing 6.7 shows a snippet{181} from a project part of the popular Jenkins automation server
which systematically annotates its methods (also private ones) with @NonNull annotations.

We could say that the punch line of all these examples is that “knowing is half the battle”:
once they identify concrete cases of potential throws, developers can exercise their judgment,
preferences, and project knowledge to come up with the most suitable code improvements
(including the conscious decision to leave everything as it is). The “knowing” part, however,
is not straightforward without adequate tool support, as it is well know that exceptions are
often undocumented [96, 97], and even the few projects that pride themselves of exhaus-
tively documenting and testing their APIs may miss some corner cases [127].

Another point worth mentioning is that there is usually a certain latitude in what code im-
provements can be applied, but even seemingly minor changes may be beneficial—especially
with exceptional behavior, where often “failing fast” is the best one can do. For example, the
authors of JSpecify remark that “what it prevented from happening could have been much
worse.”.{182} Another example are exception handling guidelines that recommend to catch an
exception, logging, and finally rethrowing it [137]; the exception may be unavoidable in the
end, but the countermeasures help a lot with debugging and analysis. Yet another example is
the approach “convert library exceptions” [137], which recommends to wrap any exception
received from a third-party library into an exception defined by the client application before
propagating it; here too, the exceptional behavior is not suppressed but it surfaces in a way
that is less surprising and, arguably, easier to use.

6.4 Conclusions

Two main directions to mature this idea of analyzing exception preconditions of library meth-
ods in client code to suggest code improvements are: 1) improving the quality and quantity
of exception preconditions; and 2) automating the generation of code improvement sug-
gestions. Direction 1) is motivated by findings that a small portion of a library is generally
responsible for a large portion of client usage [78, 109]; and can naturally lead to progress
in direction 2) by specializing the suggestions to cover the most common cases. Finally, ap-
plying our ideas to different benchmark collections [3, 96] is also a natural way to further
validate them.

Dataset: the complete dataset of our experiments, including links to code snippets, is
available: https://doi.org/10.6084/m9.figshare.23634747.

https://doi.org/10.6084/m9.figshare.23634747

Part IV
Epilogue

7
Conclusions

In this thesis, we presented our research on practical program analysis for improving Java
software. To maximize practicality, we tried to minimize assumptions and requirements
when analyzing source code, and focus on amenable, yet frequent occurring, problems. In
this vein, our research was organized into two topics namely i) repairing static analysis
violations, and ii) analyzing exception behavior. With the first, we can help developers using
tools that are already integrated into their workflows, but, unfortunately, lack automated
fixes and may report too many warnings. With the latter, we aid developers on dealing
with a common cause of failures and anti-patterns: exceptions. Exception-handling code
is often complex and among the most poorly understood and scarcely documented parts of
a system. The literature shows that exceptions are commonly implicated in bugs of Java
libraries, Android apps, and cloud systems.

For repairing static analysis violations, we developed SpongeBugs, a static technique that
can produce fixes for Java violations of simple rules detected by widely used static analyzers
SonarQube and SpotBugs. The technique scales to realistic, popular, and large open-source
projects and generates patches that developers find acceptable. Maintainers of popular Java
open-source projects accepted 87% of 946 fixes generated by SpongeBugs.

We followed multiple directions to analyze Java exception behavior. First, we gained
valuable insights into the context of frequently thrown exceptions by looking into how Java
developers test exceptions with the JUnit framework. We then developed WIT, a static anal-
ysis technique that automatically extracts exception preconditions by analyzing the Java
source code of public methods and constructors. Our extracted preconditions can often com-
plement the available documentation of a project, even of carefully documented ones; we
merged a selection of 170 exception preconditions as accepted pull requests in popular and
widely used Java projects from the Apache Software Foundation. Later, we extended WIT to
perform a modular analysis: after inferring the exception preconditions of a project A, it can
use them to analyze the behavior of another project B whenever it calls out to any methods in
A. This modular analysis enabled us to perform a large-scale investigation to automatically
detect client calls that may trigger exception behavior in library methods. Automatically de-
tecting such cases—which are under-explored in Automated Program Repair [96] and usu-
ally not detected by static analysis tools—allows us to suggest improvements to a project,

135

136 Conclusions

based on how it uses libraries, in its documentation, tests, runtime and compile-time checks.
Although our tools and techniques can work with minimal requirements and yielded

useful results—fitting in our vision of practicality— they still remain research prototypes.
Aiming at fully practical approaches is a huge endeavour; it requires practical engineering
decisions and solutions (e.g., ultra scalability, workflow integration) [130], attending to us-
ability aspects (e.g., good warning message and description) [145], and factoring in human
aspects (e.g., trust in the tool, reasons for accepting patches) [197].

7.1 Catering to Industry’s Needs

SonarQube

In this section, we discuss some developments in the SonarQube tool that demonstrate that
some of the research challenges we tackled are practically relevant to the industry. Our
work on SonarQube [125, 129], started as part of my Master’s thesis (University of Brasilia,
Brazil) and continued in my PhD research, led to the submission and acceptance of GitHub
pull requests in open-source projects maintained by commercial companies. For instance, we
had pull requests accepted to projects maintained by Microsoft, and another to the Sonar-
Qube tool. During my time as a PhD candidate, I had some brief contact with SonarQube
employees through X (formerly known as Twitter) and e-mail.

In September 2021, SonarQube introduced quick-fixes{183} in SonarLint, its IDE plugin.
We exchanged a few messages with a developer who announced that the feature was under-
development and pointed them towards our paper. The developer appreciated the work and
thanked us. Sometime in 2022, we received an e-mail from SonarQube staff, mentioning
our work on SpongeBugs.

During e-mail exchanges in April 2023, we briefly discussed our on-going work on an-
alyzing calls to third-party code. We also referred to our original work on WIT, published
in the ICSME conference 2022. In version 9.5, SonarQube announced rules that leverage
symbolic execution,{184} which could detect illegal arguments, for instance. They clarified
that these new rules did not work in third-party calls, but agreed that the direction was an
interesting one. In August 2023, SonarQube announced the feature “deeper SAST”,1 which
“uncovers security vulnerabilities [...] when your code uses and interacts with third-party
dependency code”.{185} The blog post of the feature release mentions that “traditional SAST
tools scan only your project code. These tools are unaware of the dependency code and
their security-relevant interactions [...] Traditional SAST tools understand only a fraction of
the code actually executed and, as a result, miss deeply hidden vulnerabilities”. SonarQube’s
approach and WIT’s modular analysis share similarities: both i) analyze the source code of
popular open-source dependencies; ii) populate a database with the analyzed library code
that is used to check for interactions in client code. In all, although SonarQube’s feature
focus on security, it lends strength to our idea and work on focusing on analyzing the in-
teraction between client and library code. To our knowledge, both features, “deeper SAST”

1SAST is an abbreviation of “Static application security testing”.

7.1 Catering to Industry’s Needs 137

and rules that require symbolic execution, are offered in the paid version of SonarQube.2

Research Internship

In 2022, during my time as a PhD candidate, I had the pleasure of doing a four-month
internship in Aarhus, Denmark, as a member of the Programming System Group (PSG){187}

of Uber Technologies, Inc.{188} The PSG team regularly publishes papers in the topics of
programming languages and systems research. Notably, it is responsible for NullAway [12], a
practical tool that provides compile-time checks to prevent Java’s NullPointerExceptions.
Below, I share some observations that connect to this thesis’s vision of practical program
analysis to my work at Uber.

During my internship, I worked on Piranha [166], an open-source tool for cleaning up
code related to feature flags. Feature flags enable a software application to contain several
functionalities as part of a monolithic source code repository; the set of functionalities visible
to an user are later dynamically configured, usually at by a network payload during appli-
cation initialization [166]. The tool has been recently revamped to support more general
rewrites, not only related to feature flags.{189} Piranha supports a graph language, which
allows users to define intricate transformations by chaining rewrite rules. My main contri-
bution was adding GoLang{190} (Go, for short) support for Piranha and defining rules for
cleaning stale feature flag code in Uber’s internal codebase.

Source code analysis without building a project. A significant portion of Uber’s tech
stack is developed in Go.{191} The codebase is structured in a monorepo: a single repository
containing multiple distinct projects.{192} Uber’s Go monorepo is likely one of the largest Go
codebases in the world. First of all, a monorepo facilitates code reuse, and simplifies depen-
dency management. Moreover, a monorepo eases large-scale refactorings, as, for instance,
a developer, or a source code tool, has access to all usages of e.g., a function. Unfortunately,
monorepos also bring disadvantages. Build processes become complex, take longer times to
complete, and require more resources; developers can be encouraged to use remote devel-
opment environments,{193} which are typically significantly more powerful than a personal
developer machine. The bottom-line is that Monorepos are hard to build. A source code tool
relying on a successful build, which likely include running tests, won’t scale well. Given the
difficulty of building the entire repository, we see that tools that work solely on source code
such as WIT—without compilation or test execution requirements—can be of great value.

Focused analysis and low false positive rate. At the level of thousands of engineers,{194}

there is a huge effort on saving developers time—reinforced by the papers reporting APR ex-
periences in Meta [10, 130], Microsoft [88], and Bloomberg [102, 198]. In other words, false
positives are a waste of developers time; they provide a low “signal-to-noise ratio” [130].
This is very much consistent with Christakis and Bird [34] precision threshold of “no lower
than 75–80%” and with my experience at Uber. To achieve a (very) low false positive ratio,
one may follow Bloomberg’s “deliberate strategy of only attempting to fix well-known, re-
curring bugs that take up much of software engineers’ time”. In the SpongeBugs work, we

2SonarCloud,{186} SonarQube’s cloud offering, may provide some of these features with no cost for open-
source projects.

138 Conclusions

focused on fixing recurrent warnings; in WIT work, we focused on analyzing only exception
preconditions.

7.2 Closing Words

In this dissertation, we conducted work to improve Java software with an emphasis on prac-
ticality. We explored repairing static analysis violations and analyzed exception behavior.
These topics showed to be useful for developers; we devised several pull requests from the
outputs of our tools and techniques. These pull requests were accepted by popular and ma-
ture open-source projects, including some tools and libraries that we used for our research
(e.g., Eclipse IDE, SonarQube, Apache Commons Lang, IO, and Text).

Part V
Appendices

8
Additional Contributions on Static Analysis
Violations

This brief chapter summarizes the highlights of two publications in which I was a co-author
(i.e., not the main contributor of the work), that complement my work in the area of repairing
static analysis warnings.

8.1 C# Replication of SpongeBugs

We replicated our work of automatically fixing Java static analysis warnings for the C# lan-
guage. Our results lead to a publication [155]1 in the “Replications and Negative Results”
track of the SANER 2022 conference. This short chapter summarizes the motivation and
main results of this replication.

C# is a popular2 object-oriented programming language, which shares several similar-
ities with Java but also some interesting differences. Its user community, in particular, is
somewhat narrower than Java, as it revolves around the .NET framework—which was ini-
tially focused on the Windows operating system, but has gradually become available in other
systems as well. To our knowledge, prior to our work, no study looked into how SATs are
used by C# developers nor how to automatically fix some of their common warnings.

We investigated to what extent some known results about using static analyzers for Java
change when considering C#. To this end, we combined two replications of previous Java
studies. First, we studied which static analysis tools are most widely used among C# de-
velopers, and which warnings are more commonly reported by these tools on open-source
C# projects. Second, we developed and empirically evaluated EagleRepair: a technique to
automatically fix code in response to static analysis warnings; this is a replication of our
previous work for Java [128, 129].

Our replication indicates, among other things, that

1This work was done as a part of Martin Odermatt’s master’s thesis, which I co-supervised. Martin was
primarily in charge of the C# implementation of the SpongeBugs’s technique, whereas I contributed to designing
the research questions, analyzing the results, and comparing them to the original SpongeBugs work.

2C# ranks 6th in the 2023 IEEE Spectrum ranking;{195} Java ranks 2nd.

141

142 Additional Contributions on Static Analysis Violations

1. static code analysis is fairly popular among C# developers too;

2. ReSharper is the most widely used static analyzer for C#;

3. several static analysis rules are commonly violated in both Java and C# projects;

4. automatically generating fixes to static code analysis warnings with good precision is
feasible in C#.

We also submitted pull requests containing some automatic generated fixes for C# warn-
ings. Developers of popular projects (including several components of .NET’s core frame-
work) accepted 24 of 27 pull requests (including 250 fixes from a total of 281).

8.2 A Bot for Fixing Static Analysis Violations via Pull Requests

Providing fixes for common violations of static analysis warnings is useful, but integrating
these tools into the development workflow is not a trivial task. We introduced C-3PR [27], an
event-based bot infrastructure that automatically proposes fixes to static analysis violations
through pull requests. This short section summarizes the results of the paper (published in
the “Research Track” of the SANER 2020 conference).

C-3PR follows an approach of generating small patches only for violations found in re-
cently modified code. In other words, the bot will not analyze the whole codebase to avoid
overwhelming developers with a high number of fixes. C-3PR does not implement itself
any static analysis or program transformation technique; it can seamlessly integrate exist-
ing static analysis tools that provide automatic fixes. At the time of writing, C-3PR was
integrated with ESLint, TSLint, and the WalkMod Sonar Plugin; the tools target JavaScript,
TypeScript, and Java, respectively. Unfortunately, we did not integrate SpongeBugs at the
time, as it was under development.

We evaluated C-3PR for 8 months in an industrial setting of 8 to 14 developers and 16
projects. The bot created a total of 610 pull requests after performing 20,1346 analysis for
2,179 commits. Developers accepted and merged 346 (57%) of the pull requests.

The study unveiled some interesting aspects of how developers perceived and interacted
with the fixes and pull requests. Developers rejected all pull request that had merge conflicts;
the merge resolution effort was deemed too high. Another finding was that developers want
a feature to exclude some files, or portions of code, from any analysis. For instance, Sonar-
Qube provide means to achieve both, either through its web interface, or through source
code comments.

9
Other Contributions on Software Engineering
Topics

During my time as a PhD candidate, I also contributed to research works that do not fit in
the thesis main topics. These works all fall under the software engineering umbrella and
helped me to improve as a researcher and collaborator.

[46]

Understanding the Impact of Introducing Lambda Expressions in Java Programs

Walter Lucas Monteiro de Mendonça, José Fortes, Francisco Vitor Lopes, Diego Marcilio, Rodrigo
Bonifácio, Edna Dias Canedo, Fernanda Lima, João Saraiva. In Journal of Software Engineering Re-
search and Development (JSERD 2020), Volume 8, 2020

[81]

A fine-grained data set and analysis of tangling in bug fixing commits

Steffen Herbold, Alexander Trautsch, Benjamin Ledel, Alireza Aghamohammadi, Taher Ahmed
Ghaleb, Kuljit Kaur Chahal, Tim Bossenmaier, Bhaveet Nagaria, Philip Makedonski, Matin Nili Ah-
madabadi, Kristof Szabados, Helge Spieker, Matej Madeja, Nathaniel Hoy, Valentina Lenarduzzi,
Shangwen Wang, Gema Rodríguez-Pérez, Ricardo Colomo Palacios, Roberto Verdecchia, Paramvir
Singh, Yihao Qin, Debasish Chakroborti, Willard Davis, Vijay Walunj, Hongjun Wu, Diego Marcilio,
Omar Alam, Abdullah Aldaeej, Idan Amit, Burak Turhan, Simon Eismann, Anna-Katharina Wickert,
Ivano Malavolta, Matús Sulír, Fatemeh H. Fard, Austin Z. Henley, Stratos Kourtzanidis, Eray Tuzun,
Christoph Treude, Simin Maleki Shamasbi, Ivan Pashchenko, Marvin Wyrich, James Davis, Alexander
Serebrenik, Ella Albrecht, Ethem Utku Aktas, Daniel Strüber, Johannes Erbel. In Empirical Software
Engineering (EMSE 2022), Volume 27, Number 6, 2022

[183]

An Investigation of confusing code patterns in JavaScript

Adriano Torres, Caio Oliveira, Marcio Vinicius Okimoto, Diego Marcilio, Pedro Queiroga, Fernando
Castor, Rodrigo Bonifacio, Edna Dias Canedo, Marcio Ribeiro, Eduardo Monteiro. In Journal of Sys-
tems and Software (JSS 2023), Volume 203, 2023

143

144 Other Contributions on Software Engineering Topics

10
List of Submitted Pull Requests

As part of the evaluation of the work in this thesis, we created and submitted pull requests
to open-source projects. We list all the pull requests below for the SpongeBugs (Chapter 3)
and WIT (Chapter 5) works, respectively.

145

146 List of Submitted Pull Requests

10.1 SpongeBugs

Table 10.1. Pull requests submitted as part of the evaluation of the SpongeBugs (Chapter 3) work.

Project Rules Merged? Link

1 Eclipse IDE C1 Yes https://git.eclipse.org/r/#/c/140484/

2 Eclipse IDE B2 Yes https://git.eclipse.org/r/#/c/140524/

3 Eclipse IDE C1 Yes https://git.eclipse.org/r/#/c/140668/

4 Eclipse IDE C2 Yes https://git.eclipse.org/r/#/c/141027/

5 Eclipse IDE C1 Yes https://git.eclipse.org/r/#/c/140856/

6 Eclipse IDE C9 Yes https://git.eclipse.org/r/#/c/140959/

7 Eclipse IDE C4 Yes https://git.eclipse.org/r/#/c/142386/

8 Eclipse IDE C3 Yes https://git.eclipse.org/r/#/c/143599/

9 Eclipse IDE C7 Yes https://git.eclipse.org/r/#/c/143788/

10 SonarQube C1 Yes https://github.com/SonarSource/sonarqube/pull/3212

11 SpotBugs C2 Yes https://github.com/spotbugs/spotbugs/pull/967

12 atomix B1 Yes https://github.com/atomix/atomix/pull/1032

13 atomix C5 Yes https://github.com/atomix/atomix/pull/1031

14 Ant-Media Server C5 Yes https://github.com/ant-media/Ant-Media-Server/pull/1301

15 Ant-Media Server C5 No https://github.com/ant-media/Ant-Media-Server/pull/1302

16 Ant-Media Server C2 Yes https://github.com/ant-media/Ant-Media-Server/pull/1303

17 database-rider C5 Yes https://github.com/database-rider/database-rider/pull/138

18 database-rider C2 Yes https://github.com/database-rider/database-rider/pull/139

19 database-rider C1 Yes https://github.com/database-rider/database-rider/pull/140

20 database-rider C7 Yes https://github.com/database-rider/database-rider/pull/141

21 ddf C5 No https://github.com/codice/ddf/pull/4933

22 ddf C7 Yes https://github.com/codice/ddf/pull/4934

23 ddf C8 Yes https://github.com/codice/ddf/pull/4935

24 DependencyCheck C2 Yes https://github.com/jeremylong/DependencyCheck/pull/1976

25 keanu C7 No https://github.com/improbable-research/keanu/pull/566

26 keanu C8 No https://github.com/improbable-research/keanu/pull/567

27 keanu C1 No https://github.com/improbable-research/keanu/pull/568

29 mssql-jdbc C5 Yes https://github.com/microsoft/mssql-jdbc/pull/1077

30 Payara C2 Yes https://github.com/payara/Payara/pull/4022

31 Payara C2 Yes https://github.com/payara/Payara/pull/4026

32 Payara C4 Yes https://github.com/payara/Payara/pull/4030

33 Payara C9 Yes https://github.com/payara/Payara/pull/4032

34 Payara B2 Yes https://github.com/payara/Payara/pull/4033

35 Payara C7 Yes https://github.com/payara/Payara/pull/4038

36 PrimeFaces C2 Yes https://github.com/primefaces/primefaces/pull/4879

37 PrimeFaces C3 Yes https://github.com/primefaces/primefaces/pull/4880

38 PrimeFaces C4 Yes https://github.com/primefaces/primefaces/pull/4885

39 PrimeFaces C7 Yes https://github.com/primefaces/primefaces/pull/4887

https://git.eclipse.org/r/#/c/140484/
https://git.eclipse.org/r/#/c/140524/
https://git.eclipse.org/r/#/c/140668/
https://git.eclipse.org/r/#/c/141027/
https://git.eclipse.org/r/#/c/140856/
https://git.eclipse.org/r/#/c/140959/
https://git.eclipse.org/r/#/c/142386/
https://git.eclipse.org/r/#/c/143599/
https://git.eclipse.org/r/#/c/143788/
https://github.com/SonarSource/sonarqube/pull/3212
https://github.com/spotbugs/spotbugs/pull/967
https://github.com/atomix/atomix/pull/1032
https://github.com/atomix/atomix/pull/1031
https://github.com/ant-media/Ant-Media-Server/pull/1301
https://github.com/ant-media/Ant-Media-Server/pull/1302
https://github.com/ant-media/Ant-Media-Server/pull/1303
https://github.com/database-rider/database-rider/pull/138
https://github.com/database-rider/database-rider/pull/139
https://github.com/database-rider/database-rider/pull/140
https://github.com/database-rider/database-rider/pull/141
https://github.com/codice/ddf/pull/4933
https://github.com/codice/ddf/pull/4934
https://github.com/codice/ddf/pull/4935
https://github.com/jeremylong/DependencyCheck/pull/1976
https://github.com/improbable-research/keanu/pull/566
https://github.com/improbable-research/keanu/pull/567
https://github.com/improbable-research/keanu/pull/568
https://github.com/microsoft/mssql-jdbc/pull/1077
https://github.com/payara/Payara/pull/4022
https://github.com/payara/Payara/pull/4026
https://github.com/payara/Payara/pull/4030
https://github.com/payara/Payara/pull/4032
https://github.com/payara/Payara/pull/4033
https://github.com/payara/Payara/pull/4038
https://github.com/primefaces/primefaces/pull/4879
https://github.com/primefaces/primefaces/pull/4880
https://github.com/primefaces/primefaces/pull/4885
https://github.com/primefaces/primefaces/pull/4887

10.2 wit 147

10.2 wit

All the pull requests for the WIT work were submitted to Java projects part of the Apache
Software Foundation.{196}

Table 10.2. Pull requests submitted as part of the evaluation of the WIT (Chapter 5) work.

Project Merged? Link

1 accumulo Yes https://github.com/apache/accumulo/pull/2594

2 commons-lang Yes https://github.com/apache/commons-lang/pull/869

3 commons-lang Yes https://github.com/apache/commons-lang/pull/870

4 commons-lang Yes https://github.com/apache/commons-lang/pull/871

5 commons-lang Yes https://github.com/apache/commons-lang/pull/1047

6 commons-math No https://github.com/apache/commons-math/pull/206

7 commons-math No https://github.com/apache/commons-math/pull/207

8 commons-io Yes https://github.com/apache/commons-io/pull/339

9 commons-text Yes https://github.com/apache/commons-text/pull/331

https://github.com/apache/accumulo/pull/2594
https://github.com/apache/commons-lang/pull/869
https://github.com/apache/commons-lang/pull/870
https://github.com/apache/commons-lang/pull/871
https://github.com/apache/commons-lang/pull/1047
https://github.com/apache/commons-math/pull/206
https://github.com/apache/commons-math/pull/207
https://github.com/apache/commons-io/pull/339
https://github.com/apache/commons-text/pull/331

148 List of Submitted Pull Requests

Bibliography

[1] Abreu, R., Zoeteweij, P. and van Gemund, A. J. [2007]. On the accuracy of spectrum-
based fault localization, Testing: Academic and Industrial Conference Practice and Re-
search Techniques - MUTATION (TAICPART-MUTATION 2007), pp. 89–98.

[2] Aftandilian, E., Sauciuc, R., Priya, S. and Krishnan, S. [2012]. Building useful program
analysis tools using an extensible java compiler, 12th IEEE International Working Con-
ference on Source Code Analysis and Manipulation, SCAM 2012, Riva del Garda, Italy,
September 23-24, 2012, IEEE Computer Society, pp. 14–23.
URL: https://doi.org/10.1109/SCAM.2012.28

[3] Amann, S., Nadi, S., Nguyen, H. A., Nguyen, T. N. and Mezini, M. [2016]. MUBench:
a benchmark for API-Misuse Detectors, Proceedings of the 13th International Conference
on Mining Software Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016, ACM,
pp. 464–467.

[4] Amann, S., Nguyen, H. A., Nadi, S., Nguyen, T. N. and Mezini, M. [2019]. A systematic
evaluation of static api-misuse detectors, IEEE Trans. Software Eng. 45(12): 1170–1188.
URL: https://doi.org/10.1109/TSE.2018.2827384

[5] Ammann, P. and Offutt, J. [2007]. Introduction to Software Testing, 2nd edn, Cambridge
University Press.

[6] Aniche, M., Treude, C. and Zaidman, A. [2022]. How developers engineer test cases:
An observational study, IEEE Trans. Software Eng. 48(12): 4925–4946.
URL: https://doi.org/10.1109/TSE.2021.3129889

[7] Asaduzzaman, M., Ahasanuzzaman, M., Roy, C. K. and Schneider, K. A. [2016]. How
developers use exception handling in java?, in M. Kim, R. Robbes and C. Bird (eds),
Proceedings of the 13th International Conference on Mining Software Repositories, MSR
2016, Austin, TX, USA, May 14-22, 2016, ACM, pp. 516–519.
URL: https://doi.org/10.1145/2901739.2903500

[8] Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J. D. and Penix, J. [2008]. Using
static analysis to find bugs, IEEE Software 25(5): 22–29.

[9] Azim, T., Neamtiu, I. and Marvel, L. M. [2014]. Towards self-healing smartphone
software via automated patching, in I. Crnkovic, M. Chechik and P. Grünbacher
(eds), ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014, ACM, pp. 623–628.
URL: https://doi.org/10.1145/2642937.2642955

149

150 Bibliography

[10] Bader, J., Scott, A., Pradel, M. and Chandra, S. [2019]. Getafix: learning to fix bugs
automatically, Proc. ACM Program. Lang. 3(OOPSLA): 159:1–159:27.
URL: https://doi.org/10.1145/3360585

[11] Baker, W., O’Connor, M., Shahamiri, S. R. and Terragni, V. [2022]. Detect, fix, and verify
tensorflow API misuses, IEEE International Conference on Software Analysis, Evolution
and Reengineering, SANER 2022, Honolulu, HI, USA, March 15-18, 2022, IEEE, pp. 925–
929.
URL: https://doi.org/10.1109/SANER53432.2022.00110

[12] Banerjee, S., Clapp, L. and Sridharan, M. [2019]. NullAway: practical type-based null
safety for Java, Proceedings of the ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2019, Tallinn, Estonia, August 26-30, 2019, ACM, pp. 740–750.

[13] Barik, T., Song, Y., Johnson, B. and Murphy-Hill, E. R. [2016]. From quick fixes to slow
fixes: Reimagining static analysis resolutions to enable design space exploration, 2016
IEEE International Conference on Software Maintenance and Evolution, ICSME 2016,
Raleigh, NC, USA, October 2-7, 2016, IEEE Computer Society, pp. 211–221.
URL: https://doi.org/10.1109/ICSME.2016.63

[14] Barr, E. T., Harman, M., McMinn, P., Shahbaz, M. and Yoo, S. [2015]. The oracle
problem in software testing: A survey, IEEE Trans. Software Eng. 41(5): 507–525.
URL: https://doi.org/10.1109/TSE.2014.2372785

[15] Barrett, C., Sebastiani, R., Seshia, S. and Tinelli, C. [2009]. Satisfiability modulo the-
ories, in A. Biere, M. J. H. Heule, H. van Maaren and T. Walsh (eds), Handbook of
Satisfiability, IOS Press.

[16] Bavishi, R., Yoshida, H. and Prasad, M. R. [2019]. Phoenix: Automated data-driven
synthesis of repairs for static analysis violations, Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/FSE 2019, ACM, New York, NY, USA, pp. 613–624.
URL: http://doi.acm.org/10.1145/3338906.3338952

[17] Beller, M., Bholanath, R., McIntosh, S. and Zaidman, A. [2016]. Analyzing the state
of static analysis: A large-scale evaluation in open source software, 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering (SANER),
Vol. 1, pp. 470–481.

[18] Beller, M., Gousios, G., Panichella, A., Proksch, S., Amann, S. and Zaidman, A. [2019].
Developer testing in the IDE: patterns, beliefs, and behavior, IEEE Trans. Software Eng.
45(3): 261–284.
URL: https://doi.org/10.1109/TSE.2017.2776152

[19] Bird, C., Ford, D., Zimmermann, T., Forsgren, N., Kalliamvakou, E., Lowdermilk, T.
and Gazit, I. [2023]. Taking flight with copilot: Early insights and opportunities of

Bibliography 151

ai-powered pair-programming tools, Queue 20(6): 35–57.
URL: https://doi.org/10.1145/3582083

[20] Blasi, A., Goffi, A., Kuznetsov, K., Gorla, A., Ernst, M. D., Pezzè, M. and Castellanos,
S. D. [2018]. Translating code comments to procedure specifications, in F. Tip and
E. Bodden (eds), Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21,
2018, ACM, pp. 242–253.
URL: https://doi.org/10.1145/3213846.3213872

[21] Bloch, J. [2018]. Effective Java, 3 edn, Pearson Education Inc.

[22] Brito, A., Xavier, L., Hora, A. and Valente, M. T. [2018]. Why and how Java developers
break APIs, 25th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp. 255–265.

[23] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C.,
Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I. and Amodei, D. [2020]. Language models are few-shot
learners, in H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan and H. Lin (eds),
Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.
URL: https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-
Abstract.html

[24] Buse, R. P. L. and Weimer, W. [2008]. Automatic documentation inference for excep-
tions, in B. G. Ryder and A. Zeller (eds), Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2008, Seattle, WA, USA, July 20-24,
2008, ACM, pp. 273–282.
URL: https://doi.org/10.1145/1390630.1390664

[25] Cabral, B. and Marques, P. [2011]. A transactional model for automatic exception
handling, Comput. Lang. Syst. Struct. 37(1): 43–61.
URL: https://doi.org/10.1016/j.cl.2010.09.002

[26] Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn,
P. W., Papakonstantinou, I., Purbrick, J. and Rodriguez, D. [2015]. Moving fast with
software verification, NASA Formal Methods, Springer.

[27] Carvalho, A., Luz, W. P., Marcilio, D., Bonifácio, R., Pinto, G. and Canedo, E. D. [2020].
C-3PR: A bot for fixing static analysis violations via pull requests, in K. Kontogiannis,
F. Khomh, A. Chatzigeorgiou, M. Fokaefs and M. Zhou (eds), 27th IEEE International
Conference on Software Analysis, Evolution and Reengineering, SANER 2020, London,
ON, Canada, February 18-21, 2020, IEEE, pp. 161–171.
URL: https://doi.org/10.1109/SANER48275.2020.9054842

152 Bibliography

[28] Carzaniga, A., Gorla, A., Mattavelli, A., Perino, N. and Pezzè, M. [2013]. Automatic
recovery from runtime failures, in D. Notkin, B. H. C. Cheng and K. Pohl (eds), 35th
International Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013, IEEE Computer Society, pp. 782–791.
URL: https://doi.org/10.1109/ICSE.2013.6606624

[29] Chandra, S., Fink, S. J. and Sridharan, M. [2009]. Snugglebug: a powerful approach
to weakest preconditions, in M. Hind and A. Diwan (eds), Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009,
Dublin, Ireland, June 15-21, 2009, ACM, pp. 363–374.
URL: https://doi.org/10.1145/1542476.1542517

[30] Chang, B. and Choi, K. [2016]. A review on exception analysis, Inf. Softw. Technol.
77: 1–16.
URL: https://doi.org/10.1016/j.infsof.2016.05.003

[31] Chang, H., Mariani, L. and Pezzè, M. [2013]. Exception handlers for healing
component-based systems, ACM Trans. Softw. Eng. Methodol. 22(4): 30:1–30:40.
URL: https://doi.org/10.1145/2522920.2522923

[32] Chen, H., Dou, W., Jiang, Y. and Qin, F. [2019]. Understanding exception-related bugs
in large-scale cloud systems, 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019, IEEE,
pp. 339–351.
URL: https://doi.org/10.1109/ASE.2019.00040

[33] Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H. P., Kaplan, J., Edwards,
H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf,
H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N., Pavlov, M., Power, A., Kaiser,
L., Bavarian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D., Plappert, M., Chantzis,
F., Barnes, E., Herbert-Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang, J.,
Babuschkin, I., Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M., Brundage, M., Murati, M., Mayer,
K., Welinder, P., McGrew, B., Amodei, D., McCandlish, S., Sutskever, I. and Zaremba, W.
[2021]. Evaluating large language models trained on code, CoRR abs/2107.03374.
URL: https://arxiv.org/abs/2107.03374

[34] Christakis, M. and Bird, C. [2016]. What developers want and need from program
analysis: An empirical study, Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ASE 2016, Association for Computing Machinery,
New York, NY, USA, p. 332–343.
URL: https://doi.org/10.1145/2970276.2970347

[35] Ciniselli, M., Pascarella, L., Aghajani, E., Scalabrino, S., Oliveto, R. and Bavota, G.
[2023]. Source code recommender systems: The practitioners’ perspective, 45th
IEEE/ACM International Conference on Software Engineering, ICSE 2023, Melbourne,

Bibliography 153

Australia, May 14-20, 2023, IEEE, pp. 2161–2172.
URL: https://doi.org/10.1109/ICSE48619.2023.00182

[36] Claessen, K. and Hughes, J. [2000]. QuickCheck: a lightweight tool for random test-
ing of Haskell programs, in M. Odersky and P. Wadler (eds), Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), Mon-
treal, Canada, September 18-21, 2000, ACM, pp. 268–279.
URL: https://doi.org/10.1145/351240.351266

[37] Coelho, R., Almeida, L., Gousios, G., van Deursen, A. and Treude, C. [2017]. Exception
handling bug hazards in android - results from a mining study and an exploratory
survey, Empir. Softw. Eng. 22(3): 1264–1304.
URL: https://doi.org/10.1007/s10664-016-9443-7

[38] Cornu, B., Seinturier, L. and Monperrus, M. [2015]. Exception handling analysis and
transformation using fault injection: Study of resilience against unanticipated excep-
tions, Inf. Softw. Technol. 57: 66–76.
URL: https://doi.org/10.1016/j.infsof.2014.08.004

[39] Cousot, P. and Cousot, R. [1977]. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints, in R. M.
Graham, M. A. Harrison and R. Sethi (eds), Conference Record of the Fourth ACM Sym-
posium on Principles of Programming Languages, Los Angeles, California, USA, January
1977, ACM, pp. 238–252.
URL: https://doi.org/10.1145/512950.512973

[40] Cousot, P., Cousot, R., Fähndrich, M. and Logozzo, F. [2013]. Automatic inference of
necessary preconditions, in R. Giacobazzi, J. Berdine and I. Mastroeni (eds), Verifica-
tion, Model Checking, and Abstract Interpretation, 14th International Conference, VMCAI
2013, Rome, Italy, January 20-22, 2013. Proceedings, Vol. 7737 of Lecture Notes in Com-
puter Science, Springer, pp. 128–148.
URL: https://doi.org/10.1007/978-3-642-35873-9_10

[41] Cousot, P. and Halbwachs, N. [1978]. Automatic discovery of linear restraints among
variables of a program, in A. V. Aho, S. N. Zilles and T. G. Szymanski (eds), Conference
Record of the Fifth Annual ACM Symposium on Principles of Programming Languages,
Tucson, Arizona, USA, January 1978, ACM Press, pp. 84–96.
URL: https://doi.org/10.1145/512760.512770

[42] Dabic, O., Aghajani, E. and Bavota, G. [2021]. Sampling projects in github for MSR
studies, 18th IEEE/ACM International Conference on Mining Software Repositories, MSR
2021, IEEE, pp. 560–564.

[43] Dalton, F., Ribeiro, M., Pinto, G., Fernandes, L., Gheyi, R. and Fonseca, B. [2020]. Is
exceptional behavior testing an exception?: An empirical assessment using java auto-
mated tests, in J. Li, L. Jaccheri, T. Dingsøyr and R. Chitchyan (eds), EASE ’20: Eval-
uation and Assessment in Software Engineering, Trondheim, Norway, April 15-17, 2020,

154 Bibliography

ACM, pp. 170–179.
URL: https://doi.org/10.1145/3383219.3383237

[44] Daniel, W. W. [1999]. Biostatistics: A Foundation for Analysis in the Health Sciences, 7
edn, Wiley.

[45] Dantas, R., Carvalho, A., Marcílio, D., Fantin, L., Silva, U., Lucas, W. and Bonifácio,
R. [2018]. Reconciling the past and the present: An empirical study on the applica-
tion of source code transformations to automatically rejuvenate Java programs, 2018
IEEE 25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 497–501.

[46] de Mendonça, W. L. M., Fortes, J., Lopes, F. V., Marcilio, D., Bonifácio, R., Canedo,
E. D., Lima, F. and Saraiva, J. [2020]. Understanding the impact of introducing lambda
expressions in java programs, J. Softw. Eng. Res. Dev. 8.
URL: https://doi.org/10.5753/jserd.2020.744

[47] de Moura, L. M. and Bjørner, N. [2008]. Z3: an efficient SMT solver, in C. R. Ramakr-
ishnan and J. Rehof (eds), Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, Vol. 4963 of Lecture Notes in Computer Science, Springer,
pp. 337–340.
URL: https://doi.org/10.1007/978-3-540-78800-3_24

[48] de Pádua, G. B. and Shang, W. [2017]. Studying the prevalence of exception handling
anti-patterns, in G. Scanniello, D. Lo and A. Serebrenik (eds), Proceedings of the 25th In-
ternational Conference on Program Comprehension, ICPC 2017, Buenos Aires, Argentina,
May 22-23, 2017, IEEE Computer Society, pp. 328–331.
URL: https://doi.org/10.1109/ICPC.2017.1

[49] Derakhshanfar, P., Devroey, X., Panichella, A., Zaidman, A. and van Deursen, A. [2020].
Botsing, a search-based crash reproduction framework for Java, ASE, IEEE/ACM.

[50] Deursen, A., Moonen, L. M. F., Bergh, A. and Kok, G. [2001]. Refactoring test code, CWI
(Centre for Mathematics and Computer Science).

[51] Dhar, A., Purandare, R., Dhawan, M. and Rangaswamy, S. [2015]. CLOTHO: saving
programs from malformed strings and incorrect string-handling, in E. D. Nitto, M. Har-
man and P. Heymans (eds), Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015,
ACM, pp. 555–566.
URL: https://doi.org/10.1145/2786805.2786877

[52] Dietrich, J., Pearce, D. J., Jezek, K. and Brada, P. [2017]. Contracts in the wild: A study
of java programs, in P. Müller (ed.), 31st European Conference on Object-Oriented Pro-
gramming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain, Vol. 74 of LIPIcs, Schloss

Bibliography 155

Dagstuhl - Leibniz-Zentrum für Informatik, pp. 9:1–9:29.
URL: https://doi.org/10.4230/LIPIcs.ECOOP.2017.9

[53] Digkas, G., Lungu, M., Avgeriou, P., Chatzigeorgiou, A. and Ampatzoglou, A. [2018].
How do developers fix issues and pay back technical debt in the apache ecosystem?,
in R. Oliveto, M. D. Penta and D. C. Shepherd (eds), 25th International Conference on
Software Analysis, Evolution and Reengineering, SANER 2018, Campobasso, Italy, March
20-23, 2018, IEEE Computer Society, pp. 153–163.
URL: https://doi.org/10.1109/SANER.2018.8330205

[54] Dobolyi, K. and Weimer, W. [2008]. Changing java’s semantics for handling null pointer
exceptions, 19th International Symposium on Software Reliability Engineering (ISSRE
2008), 11-14 November 2008, Seattle/Redmond, WA, USA, IEEE Computer Society,
pp. 47–56.
URL: https://doi.org/10.1109/ISSRE.2008.59

[55] Durieux, T., Cornu, B., Seinturier, L. and Monperrus, M. [2017]. Dynamic patch gener-
ation for null pointer exceptions using metaprogramming, in M. Pinzger, G. Bavota and
A. Marcus (eds), IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering, SANER 2017, Klagenfurt, Austria, February 20-24, 2017, IEEE Computer
Society, pp. 349–358.
URL: https://doi.org/10.1109/SANER.2017.7884635

[56] Durieux, T., Madeiral, F., Martinez, M. and Abreu, R. [2019]. Empirical review of java
program repair tools: a large-scale experiment on 2, 141 bugs and 23, 551 repair at-
tempts, in M. Dumas, D. Pfahl, S. Apel and A. Russo (eds), Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019, ACM, pp. 302–313.
URL: https://doi.org/10.1145/3338906.3338911

[57] Durieux, T., Soto-Valero, C. and Baudry, B. [2021]. Duets: A dataset of reproducible
pairs of Java library-clients, 18th IEEE/ACM International Conference on Mining Soft-
ware Repositories, MSR 2021, Madrid, Spain, May 17-19, 2021, IEEE, pp. 545–549.

[58] Ebert, F., Castor, F. and Serebrenik, A. [2015]. An exploratory study on exception
handling bugs in java programs, J. Syst. Softw. 106: 82–101.
URL: https://doi.org/10.1016/j.jss.2015.04.066

[59] Ebert, F., Castor, F. and Serebrenik, A. [2020]. A reflection on "an exploratory study on
exception handling bugs in java programs", in K. Kontogiannis, F. Khomh, A. Chatzige-
orgiou, M. Fokaefs and M. Zhou (eds), 27th IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER 2020, London, ON, Canada, February 18-
21, 2020, IEEE, pp. 552–556.
URL: https://doi.org/10.1109/SANER48275.2020.9054791

156 Bibliography

[60] Ernst, M. D., Cockrell, J., Griswold, W. G. and Notkin, D. [1999]. Dynamically discover-
ing likely program invariants to support program evolution, in B. W. Boehm, D. Garlan
and J. Kramer (eds), Proceedings of the 1999 International Conference on Software En-
gineering, ICSE’ 99, Los Angeles, CA, USA, May 16-22, 1999, ACM, pp. 213–224.
URL: https://doi.org/10.1145/302405.302467

[61] Ernst, N. A. and Bavota, G. [2022]. Ai-driven development is here: Should you worry?,
IEEE Softw. 39(2): 106–110.
URL: https://doi.org/10.1109/MS.2021.3133805

[62] Error Prone [2022]. [Online; accessed 3-May-2022].
URL: https://github.com/google/error-prone

[63] Etemadi, K., Harrand, N., Larsén, S., Adzemovic, H., Phu, H. L., Verma, A., Madeiral,
F., Wikström, D. and Monperrus, M. [2023]. Sorald: Automatic patch sugges-
tions for sonarqube static analysis violations, IEEE Trans. Dependable Secur. Comput.
20(4): 2794–2810.
URL: https://doi.org/10.1109/TDSC.2022.3167316

[64] Fan, L., Su, T., Chen, S., Meng, G., Liu, Y., Xu, L., Pu, G. and Su, Z. [2018]. Large-
scale analysis of framework-specific exceptions in Android apps, Proceedings of the 40th
International Conference on Software Engineering, ACM, pp. 408–419.
URL: https://doi.org/10.1145/3180155.3180222

[65] Fan, Z., Gao, X., Mirchev, M., Roychoudhury, A. and Tan, S. H. [2023]. Automated
repair of programs from large language models, 45th IEEE/ACM International Confer-
ence on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, IEEE,
pp. 1469–1481.
URL: https://doi.org/10.1109/ICSE48619.2023.00128

[66] Forward, A. and Lethbridge, T. [2002]. The relevance of software documentation,
tools and technologies: a survey, Proceedings of the 2002 ACM Symposium on Document
Engineering, McLean, Virginia, USA, November 8-9, 2002, ACM, pp. 26–33.
URL: https://doi.org/10.1145/585058.585065

[67] Fraser, G. and Arcuri, A. [2011]. Evosuite: automatic test suite generation for object-
oriented software, in T. Gyimóthy and A. Zeller (eds), SIGSOFT/FSE’11 19th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (FSE-19) and ESEC’11:
13th European Software Engineering Conference (ESEC-13), Szeged, Hungary, September
5-9, 2011, ACM, pp. 416–419.
URL: https://doi.org/10.1145/2025113.2025179

[68] Fraser, G. and Arcuri, A. [2015]. 1600 faults in 100 projects: automatically finding
faults while achieving high coverage with EvoSuite, Empir. Softw. Eng. 20(3): 611–
639.
URL: https://doi.org/10.1007/s10664-013-9288-2

Bibliography 157

[69] Gamboa, C., Canelas, P., Timperley, C. S. and Fonseca, A. [2023]. Usability-oriented
design of liquid types for java, 45th IEEE/ACM International Conference on Software
Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, IEEE, pp. 1520–1532.
URL: https://doi.org/10.1109/ICSE48619.2023.00132

[70] Gazzola, L., Micucci, D. and Mariani, L. [2019]. Automatic software repair: A survey,
IEEE Trans. Software Eng. 45(1): 34–67.
URL: https://doi.org/10.1109/TSE.2017.2755013

[71] Georges, A., Buytaert, D. and Eeckhout, L. [2007]. Statistically rigorous Java perfor-
mance evaluation, Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications, OOPSLA ’07, ACM, New York, NY, USA,
pp. 57–76.
URL: http://doi.acm.org/10.1145/1297027.1297033

[72] Ghezzi, C. and Jazayeri, M. [1998]. Programming language concepts, 3rd edn, John
Wiley & Sons.

[73] Ginelli, D., Riganelli, O., Micucci, D. and Mariani, L. [2021]. Exception-driven fault
localization for automated program repair, 21st IEEE International Conference on Soft-
ware Quality, Reliability and Security, QRS 2021, Hainan, China, December 6-10, 2021,
IEEE, pp. 598–607.
URL: https://doi.org/10.1109/QRS54544.2021.00070

[74] Goffi, A., Gorla, A., Ernst, M. D. and Pezzè, M. [2016a]. Automatic generation of ora-
cles for exceptional behaviors, in A. Zeller and A. Roychoudhury (eds), Proceedings of
the 25th International Symposium on Software Testing and Analysis, ISSTA 2016, Saar-
brücken, Germany, July 18-20, 2016, ACM, pp. 213–224.
URL: https://doi.org/10.1145/2931037.2931061

[75] Goffi, A., Gorla, A., Ernst, M. D. and Pezzè, M. [2016b]. Automatic generation of
oracles for exceptional behaviors, Proceedings of the 25th International Symposium on
Software Testing and Analysis, ISSTA 2016, Association for Computing Machinery, New
York, NY, USA, p. 213–224.
URL: https://doi.org/10.1145/2931037.2931061

[76] Goues, C. L., Nguyen, T., Forrest, S. and Weimer, W. [2012]. Genprog: A generic
method for automatic software repair, IEEE Trans. Software Eng. 38(1): 54–72.
URL: https://doi.org/10.1109/TSE.2011.104

[77] Habib, A. and Pradel, M. [2018]. How many of all bugs do we find? a study of static
bug detectors, Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, ACM, New York, NY, USA, pp. 317–328.
URL: http://doi.acm.org/10.1145/3238147.3238213

[78] Harrand, N., Benelallam, A., Soto-Valero, C., Bettega, F., Barais, O. and Baudry, B.
[2022]. API beauty is in the eye of the clients: 2.2 million maven dependencies reveal
the spectrum of client-API usages, J. Syst. Softw. 184: 111134.

158 Bibliography

[79] Hassan, F., Bansal, C., Nagappan, N., Zimmermann, T. and Awadallah, A. H. [2020].
An empirical study of software exceptions in the field using search logs, in M. T. Baldas-
sarre, F. Lanubile, M. Kalinowski and F. Sarro (eds), ESEM ’20: ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement, Bari, Italy, October 5-
7, 2020, ACM, pp. 4:1–4:12.
URL: https://doi.org/10.1145/3382494.3410692

[80] Hassan, F., Mostafa, S., Lam, E. S. L. and Wang, X. [2017]. Automatic building of java
projects in software repositories: A study on feasibility and challenges, in A. Bener,
B. Turhan and S. Biffl (eds), 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM 2017, Toronto, ON, Canada, November
9-10, 2017, IEEE Computer Society, pp. 38–47.
URL: https://doi.org/10.1109/ESEM.2017.11

[81] Herbold, S., Trautsch, A., Ledel, B., Aghamohammadi, A., Ghaleb, T. A., Chahal, K. K.,
Bossenmaier, T., Nagaria, B., Makedonski, P., Ahmadabadi, M. N., Szabados, K., Spieker,
H., Madeja, M., Hoy, N., Lenarduzzi, V., Wang, S., Rodríguez-Pérez, G., Palacios, R. C.,
Verdecchia, R., Singh, P., Qin, Y., Chakroborti, D., Davis, W., Walunj, V., Wu, H., Marcilio,
D., Alam, O., Aldaeej, A., Amit, I., Turhan, B., Eismann, S., Wickert, A., Malavolta, I.,
Sulír, M., Fard, F. H., Henley, A. Z., Kourtzanidis, S., Tuzun, E., Treude, C., Shamasbi,
S. M., Pashchenko, I., Wyrich, M., Davis, J., Serebrenik, A., Albrecht, E., Aktas, E. U.,
Strüber, D. and Erbel, J. [2022]. A fine-grained data set and analysis of tangling in bug
fixing commits, Empir. Softw. Eng. 27(6): 125.
URL: https://doi.org/10.1007/s10664-021-10083-5

[82] Hoare, C. A. R. [2009]. Null references: The bil-
lion dollar mistake, https://www.infoq.com/presentations/

Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/.

[83] Holling, D., Hofbauer, A., Pretschner, A. and Gemmar, M. [2016]. Profiting from unit
tests for integration testing, 2016 IEEE International Conference on Software Testing,
Verification and Validation, ICST 2016, Chicago, IL, USA, April 11-15, 2016, IEEE Com-
puter Society, pp. 353–363.
URL: https://doi.org/10.1109/ICST.2016.28

[84] Hu, X., Li, G., Xia, X., Lo, D. and Jin, Z. [2018]. Deep code comment generation,
in F. Khomh, C. K. Roy and J. Siegmund (eds), Proceedings of the 26th Conference
on Program Comprehension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018, ACM,
pp. 200–210.
URL: https://doi.org/10.1145/3196321.3196334

[85] Infer Static Analyzer [2022]. [Online; accessed 3-May-2022].
URL: https://fbinfer.com/

[86] Jakobus, B., Barbosa, E. A., Garcia, A. F. and de Lucena, C. J. P. [2015]. Contrasting
exception handling code across languages: An experience report involving 50 open

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

Bibliography 159

source projects, 26th IEEE International Symposium on Software Reliability Engineer-
ing, ISSRE 2015, Gaithersbury, MD, USA, November 2-5, 2015, IEEE Computer Society,
pp. 183–193.
URL: https://doi.org/10.1109/ISSRE.2015.7381812

[87] JavaParser [2022]. [Online; accessed 3-May-2022].
URL: https://javaparser.org/

[88] Jin, M., Shahriar, S., Tufano, M., Shi, X., Lu, S., Sundaresan, N. and Svyatkovskiy, A.
[2023]. Inferfix: End-to-end program repair with llms, CoRR abs/2303.07263.
URL: https://doi.org/10.48550/arXiv.2303.07263

[89] Johnson, B., Song, Y., Murphy-Hill, E. and Bowdidge, R. [2013]. Why don’t software
developers use static analysis tools to find bugs?, Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, IEEE Press, Piscataway, NJ, USA, pp. 672–
681.
URL: http://dl.acm.org/citation.cfm?id=2486788.2486877

[90] JUnit 5 [2022]. [Online; accessed 3-May-2022].
URL: https://junit.org/junit5/

[91] Just, R., Jalali, D. and Ernst, M. D. [2014]. Defects4j: a database of existing faults to
enable controlled testing studies for java programs, in C. S. Pasareanu and D. Marinov
(eds), International Symposium on Software Testing and Analysis, ISSTA ’14, San Jose,
CA, USA - July 21 - 26, 2014, ACM, pp. 437–440.
URL: https://doi.org/10.1145/2610384.2628055

[92] Kabadi, V., Kong, D., Xie, S., Prana, G. A. A., Le, T.-D. B., Le, X.-B. D. and Lo, D. [2023].
The Future Can’t Help Fix The Past: Assessing Program Repair In The Wild, ICSME.

[93] Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., Germán, D. M. and Damian, D. E.
[2016]. An in-depth study of the promises and perils of mining github, Empir. Softw.
Eng. 21(5): 2035–2071.
URL: https://doi.org/10.1007/s10664-015-9393-5

[94] Kechagia, M., Devroey, X., Panichella, A., Gousios, G. and van Deursen, A. [2019a].
Effective and Efficient API Misuse Detection via Exception Propagation and Search-Based
Testing, Association for Computing Machinery, New York, NY, USA, p. 192–203.
URL: https://doi.org/10.1145/3293882.3330552

[95] Kechagia, M., Devroey, X., Panichella, A., Gousios, G. and van Deursen, A. [2019b]. Ef-
fective and efficient API misuse detection via exception propagation and search-based
testing, in D. Zhang and A. Møller (eds), Proceedings of the 28th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, ISSTA 2019, Beijing, China, July
15-19, 2019, ACM, pp. 192–203.
URL: https://doi.org/10.1145/3293882.3330552

160 Bibliography

[96] Kechagia, M., Mechtaev, S., Sarro, F. and Harman, M. [2022]. Evaluating auto-
matic program repair capabilities to repair API misuses, IEEE Trans. Software Eng.
48(7): 2658–2679.
URL: https://doi.org/10.1109/TSE.2021.3067156

[97] Kechagia, M. and Spinellis, D. [2014]. Undocumented and unchecked: exceptions that
spell trouble, in P. T. Devanbu, S. Kim and M. Pinzger (eds), 11th Working Conference
on Mining Software Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014, Hyder-
abad, India, ACM, pp. 312–315.
URL: https://doi.org/10.1145/2597073.2597089

[98] Kery, M. B., Goues, C. L. and Myers, B. A. [2016]. Examining programmer practices
for locally handling exceptions, in M. Kim, R. Robbes and C. Bird (eds), Proceedings of
the 13th International Conference on Mining Software Repositories, MSR 2016, Austin,
TX, USA, May 14-22, 2016, ACM, pp. 484–487.
URL: https://doi.org/10.1145/2901739.2903497

[99] Kim, D., Nam, J., Song, J. and Kim, S. [2013]. Automatic patch generation learned
from human-written patches, in D. Notkin, B. H. C. Cheng and K. Pohl (eds), 35th
International Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA,
May 18-26, 2013, IEEE Computer Society, pp. 802–811.
URL: https://doi.org/10.1109/ICSE.2013.6606626

[100] Kim, J., Batory, D. S., Dig, D. and Azanza, M. [2016]. Improving refactoring speed
by 10x, in L. K. Dillon, W. Visser and L. A. Williams (eds), Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-
22, 2016, ACM, pp. 1145–1156.
URL: https://doi.org/10.1145/2884781.2884802

[101] Kim, M., Kim, Y., Jeong, H., Heo, J., Kim, S., Chung, H. and Lee, E. [2022]. An empir-
ical study of deep transfer learning-based program repair for kotlin projects, in A. Roy-
choudhury, C. Cadar and M. Kim (eds), Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engi-
neering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022, ACM, pp. 1441–
1452.
URL: https://doi.org/10.1145/3540250.3558967

[102] Kirbas, S., Windels, E., McBello, O., Kells, K., Pagano, M. W., Szalanski, R., Nowack,
V., Winter, E. R., Counsell, S., Bowes, D., Hall, T., Haraldsson, S. and Woodward, J. R.
[2021]. On the introduction of automatic program repair in bloomberg, IEEE Softw.
38(4): 43–51.
URL: https://doi.org/10.1109/MS.2021.3071086

[103] Klint, P., van der Storm, T. and Vinju, J. J. [2009]. RASCAL: A domain specific language
for source code analysis and manipulation, Ninth IEEE International Working Conference
on Source Code Analysis and Manipulation, SCAM 2009, Edmonton, Alberta, Canada,

Bibliography 161

September 20-21, 2009, IEEE Computer Society, pp. 168–177.
URL: https://doi.org/10.1109/SCAM.2009.28

[104] Kolak, S. D., Martins, R., Le Goues, C. and Hellendoorn, V. J. [2022]. Patch gener-
ation with language models: Feasibility and scaling behavior, Deep Learning for Code
Workshop.

[105] Lawall, J. and Muller, G. [2022]. Automating program transformation with coccinelle,
in J. V. Deshmukh, K. Havelund and I. Perez (eds), NASA Formal Methods - 14th Interna-
tional Symposium, NFM 2022, Pasadena, CA, USA, May 24-27, 2022, Proceedings, Vol.
13260 of Lecture Notes in Computer Science, Springer, pp. 71–87.
URL: https://doi.org/10.1007/978-3-031-06773-0_4

[106] Le Goues, C., Pradel, M. and Roychoudhury, A. [2019]. Automated program repair,
Commun. ACM 62(12): 56–65.
URL: https://doi.org/10.1145/3318162

[107] Lee, J., Hong, S. and Oh, H. [2022]. NPEX: repairing java null pointer exceptions
without tests, 44th IEEE/ACM 44th International Conference on Software Engineering,
ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, ACM, pp. 1532–1544.
URL: https://doi.org/10.1145/3510003.3510186

[108] Li, R., Chen, B., Zhang, F., Sun, C. and Peng, X. [2022]. Detecting runtime excep-
tions by deep code representation learning with attention-based graph neural networks,
IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER
2022, Honolulu, HI, USA, March 15-18, 2022, IEEE, pp. 373–384.
URL: https://doi.org/10.1109/SANER53432.2022.00053

[109] Li, X., Jiang, J., Benton, S., Xiong, Y. and Zhang, L. [2021]. A large-scale study
on API misuses in the wild, 14th IEEE Conference on Software Testing, Verification and
Validation, ICST 2021, Porto de Galinhas, Brazil, April 12-16, 2021, IEEE, pp. 241–252.
URL: https://doi.org/10.1109/ICST49551.2021.00034

[110] Lin, D., Koppel, J., Chen, A. and Solar-Lezama, A. [2017]. Quixbugs: a multi-lingual
program repair benchmark set based on the quixey challenge, in G. C. Murphy (ed.),
Proceedings Companion of the 2017 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity, SPLASH 2017, Van-
couver, BC, Canada, October 23 - 27, 2017, ACM, pp. 55–56.
URL: https://doi.org/10.1145/3135932.3135941

[111] Liskov, B. H. and Wing, J. M. [1994]. A behavioral notion of subtyping, ACM Trans.
Program. Lang. Syst. 16(6): 1811–1841.
URL: https://doi.org/10.1145/197320.197383

[112] Liu, K., Kim, D., Bissyandé, T. F., Yoo, S. and Traon, Y. L. [2021]. Mining fix patterns
for findbugs violations, IEEE Trans. Software Eng. 47(1): 165–188.
URL: https://doi.org/10.1109/TSE.2018.2884955

162 Bibliography

[113] Liu, K., Koyuncu, A., Bissyandé, T. F., Kim, D., Klein, J. and Traon, Y. L. [2019]. You
cannot fix what you cannot find! an investigation of fault localization bias in bench-
marking automated program repair systems, 12th IEEE Conference on Software Testing,
Validation and Verification, ICST 2019, Xi’an, China, April 22-27, 2019, IEEE, pp. 102–
113.
URL: https://doi.org/10.1109/ICST.2019.00020

[114] Liu, K., Koyuncu, A., Kim, D. and Bissyandé, T. F. [2019]. AVATAR: fixing semantic
bugs with fix patterns of static analysis violations, in X. Wang, D. Lo and E. Shihab (eds),
26th IEEE International Conference on Software Analysis, Evolution and Reengineering,
SANER 2019, Hangzhou, China, February 24-27, 2019, IEEE, pp. 456–467.
URL: https://doi.org/10.1109/SANER.2019.8667970

[115] Liu, K., Li, L., Koyuncu, A., Kim, D., Liu, Z., Klein, J. and Bissyandé, T. F. [2021]. A
critical review on the evaluation of automated program repair systems, J. Syst. Softw.
171: 110817.
URL: https://doi.org/10.1016/j.jss.2020.110817

[116] Liu, K., Wang, S., Koyuncu, A., Kim, K., Bissyandé, T. F., Kim, D., Wu, P., Klein, J.,
Mao, X. and Traon, Y. L. [2020]. On the efficiency of test suite based program re-
pair: A systematic assessment of 16 automated repair systems for java programs, CoRR
abs/2008.00914.
URL: https://arxiv.org/abs/2008.00914

[117] Logozzo, F. [2004]. Automatic inference of class invariants, VMCAI, Vol. 2937 of LNCS,
Springer, pp. 211–222.

[118] Logozzo, F. and Ball, T. [2012]. Modular and verified automatic program repair, in
G. T. Leavens and M. B. Dwyer (eds), Proceedings of the 27th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, ACM, pp. 133–146.
URL: https://doi.org/10.1145/2384616.2384626

[119] Long, F., Amidon, P. and Rinard, M. C. [2017]. Automatic inference of code transforms
for patch generation, in E. Bodden, W. Schäfer, A. van Deursen and A. Zisman (eds),
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ES-
EC/FSE 2017, Paderborn, Germany, September 4-8, 2017, ACM, pp. 727–739.
URL: https://doi.org/10.1145/3106237.3106253

[120] Loriot, B., Madeiral, F. and Monperrus, M. [2022]. Styler: learning formatting con-
ventions to repair checkstyle violations, Empir. Softw. Eng. 27(6): 149.
URL: https://doi.org/10.1007/s10664-021-10107-0

[121] Madeiral, F., Urli, S., de Almeida Maia, M. and Monperrus, M. [2019]. BEARS: an
extensible java bug benchmark for automatic program repair studies, in X. Wang, D. Lo
and E. Shihab (eds), 26th IEEE International Conference on Software Analysis, Evolu-
tion and Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019, IEEE,

Bibliography 163

pp. 468–478.
URL: https://doi.org/10.1109/SANER.2019.8667991

[122] Mahajan, S., Abolhassani, N. and Prasad, M. R. [2020a]. Recommending Stack Over-
flow Posts for Fixing Runtime Exceptions Using Failure Scenario Matching, Association for
Computing Machinery, New York, NY, USA, p. 1052–1064.
URL: https://doi.org/10.1145/3368089.3409764

[123] Mahajan, S., Abolhassani, N. and Prasad, M. R. [2020b]. Recommending stack over-
flow posts for fixing runtime exceptions using failure scenario matching, ESEC/FSE,
ACM.

[124] Mao, K., Harman, M. and Jia, Y. [2016]. Sapienz: multi-objective automated testing
for android applications, in A. Zeller and A. Roychoudhury (eds), Proceedings of the 25th
International Symposium on Software Testing and Analysis, ISSTA 2016, Saarbrücken,
Germany, July 18-20, 2016, ACM, pp. 94–105.
URL: https://doi.org/10.1145/2931037.2931054

[125] Marcilio, D., Bonifácio, R., Monteiro, E., Canedo, E. D., Luz, W. P. and Pinto, G. [2019].
Are static analysis violations really fixed?: a closer look at realistic usage of sonarqube,
in Y. Guéhéneuc, F. Khomh and F. Sarro (eds), Proceedings of the 27th International
Conference on Program Comprehension, ICPC 2019, Montreal, QC, Canada, May 25-31,
2019, IEEE / ACM, pp. 209–219.
URL: https://doi.org/10.1109/ICPC.2019.00040

[126] Marcilio, D. and Furia, C. A. [2021]. How java programmers test exceptional behavior,
2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR),
pp. 207–218.

[127] Marcilio, D. and Furia, C. A. [2022]. What is thrown? Lightweight precise automatic
extraction of exception preconditions in Java methods, IEEE International Conference
on Software Maintenance and Evolution, ICSME 2022, Limassol, Cyprus, October 3-7,
2022, IEEE, pp. 340–351.

[128] Marcilio, D., Furia, C. A., Bonifácio, R. and Pinto, G. [2019]. Automatically generating
fix suggestions in response to static code analysis warnings, 19th International Working
Conference on Source Code Analysis and Manipulation, SCAM 2019, Cleveland, OH, USA,
September 30 - October 1, 2019, IEEE, pp. 34–44.
URL: https://doi.org/10.1109/SCAM.2019.00013

[129] Marcilio, D., Furia, C. A., Bonifácio, R. and Pinto, G. [2020]. Spongebugs: Automat-
ically generating fix suggestions in response to static code analysis warnings, J. Syst.
Softw. 168: 110671.
URL: https://doi.org/10.1016/j.jss.2020.110671

[130] Marginean, A., Bader, J., Chandra, S., Harman, M., Jia, Y., Mao, K., Mols, A. and Scott,
A. [2019]. Sapfix: automated end-to-end repair at scale, in H. Sharp and M. Whalen

164 Bibliography

(eds), Proceedings of the 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019,
IEEE / ACM, pp. 269–278.
URL: https://doi.org/10.1109/ICSE-SEIP.2019.00039

[131] Martinez, M. and Monperrus, M. [2019]. Astor: Exploring the design space of
generate-and-validate program repair beyond genprog, J. Syst. Softw. 151: 65–80.
URL: https://doi.org/10.1016/j.jss.2019.01.069

[132] Mastropaolo, A., Pascarella, L., Guglielmi, E., Ciniselli, M., Scalabrino, S., Oliveto, R.
and Bavota, G. [2023]. On the robustness of code generation techniques: An empirical
study on github copilot, 45th IEEE/ACM International Conference on Software Engineer-
ing, ICSE 2023, Melbourne, Australia, May 14-20, 2023, IEEE, pp. 2149–2160.
URL: https://doi.org/10.1109/ICSE48619.2023.00181

[133] McConnell, S. [2004]. Code Complete, 2nd edn, Microsoft Press.

[134] McElreath, R. [2015]. Statistical Rethinking: A Bayesian Course with Examples in R
and Stan, Chapman & Hall.

[135] Mechtaev, S., Yi, J. and Roychoudhury, A. [2015]. Directfix: Looking for simple pro-
gram repairs, 2015 IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, Vol. 1, pp. 448–458.

[136] Mechtaev, S., Yi, J. and Roychoudhury, A. [2016]. Angelix: scalable multiline program
patch synthesis via symbolic analysis, in L. K. Dillon, W. Visser and L. A. Williams (eds),
Proceedings of the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, ACM, pp. 691–701.
URL: https://doi.org/10.1145/2884781.2884807

[137] Melo, H., Coelho, R. and Treude, C. [2019]. Unveiling exception handling guidelines
adopted by Java developers, 26th IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019,
IEEE, pp. 128–139.
URL: https://doi.org/10.1109/SANER.2019.8668001

[138] Mesbah, A., Rice, A., Johnston, E., Glorioso, N. and Aftandilian, E. [2019]. Deep-
delta: learning to repair compilation errors, in M. Dumas, D. Pfahl, S. Apel and A. Russo
(eds), Proceedings of the ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26-30, 2019, ACM, pp. 925–936.
URL: https://doi.org/10.1145/3338906.3340455

[139] Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar,
A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller,
R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J., Terrel,
A. R., Roučka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R. and Scopatz, A. [2017].

Bibliography 165

Sympy: symbolic computing in python, PeerJ Computer Science 3: e103.
URL: https://doi.org/10.7717/peerj-cs.103

[140] Meyer, B. [1997]. Object-Oriented Software Construction, 2nd edn, Prentice Hall.

[141] Meyer, B. [2005]. The dependent delegate dilemma, Engineering Theories of Software
Intensive Systems, Springer.

[142] Monperrus, M. [2018]. Automatic software repair: A bibliography, ACM Comput.
Surv. 51(1).
URL: https://doi.org/10.1145/3105906

[143] Monperrus, M., Urli, S., Durieux, T., Martinez, M., Baudry, B. and Seinturier, L.
[2019]. Repairnator patches programs automatically, Ubiquity 2019(July): 1–12.
URL: https://doi.org/10.1145/3349589

[144] Motwani, M., Soto, M., Brun, Y., Just, R. and Goues, C. L. [2022]. Quality of auto-
mated program repair on real-world defects, IEEE Trans. Software Eng. 48(2): 637–661.
URL: https://doi.org/10.1109/TSE.2020.2998785

[145] Nachtigall, M., Schlichtig, M. and Bodden, E. [2022]. A large-scale study of usability
criteria addressed by static analysis tools, in S. Ryu and Y. Smaragdakis (eds), ISSTA ’22:
31st ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual
Event, South Korea, July 18 - 22, 2022, ACM, pp. 532–543.
URL: https://doi.org/10.1145/3533767.3534374

[146] Naitou, K., Tanikado, A., Matsumoto, S., Higo, Y., Kusumoto, S., Kirinuki, H.,
Kurabayashi, T. and Tanno, H. [2018]. Toward introducing automated program repair
techniques to industrial software development, in F. Khomh, C. K. Roy and J. Sieg-
mund (eds), Proceedings of the 26th Conference on Program Comprehension, ICPC 2018,
Gothenburg, Sweden, May 27-28, 2018, ACM, pp. 332–335.
URL: https://doi.org/10.1145/3196321.3196358

[147] Najumudheen, E. S. F., Mall, R. and Samanta, D. [2019]. Modeling and coverage
analysis of programs with exception handling, in R. Naik, S. Sarkar, T. T. Hildebrandt,
A. Kumar and R. Sharma (eds), Proceedings of the 12th Innovations on Software En-
gineering Conference (formerly known as India Software Engineering Conference), ISEC
2019, Pune, India, February 14-16, 2019, ACM, pp. 15:1–15:11.
URL: https://doi.org/10.1145/3299771.3299785

[148] Nakamaru, T., Matsunaga, T., Yamazaki, T., Akiyama, S. and Chiba, S. [2020]. An em-
pirical study of method chaining in java, in S. Kim, G. Gousios, S. Nadi and J. Hejderup
(eds), MSR ’20: 17th International Conference on Mining Software Repositories, Seoul,
Republic of Korea, 29-30 June, 2020, ACM, pp. 93–102.
URL: https://doi.org/10.1145/3379597.3387441

166 Bibliography

[149] Nakshatri, S., Hegde, M. and Thandra, S. [2016]. Analysis of exception handling
patterns in java projects: an empirical study, in M. Kim, R. Robbes and C. Bird (eds),
Proceedings of the 13th International Conference on Mining Software Repositories, MSR
2016, Austin, TX, USA, May 14-22, 2016, ACM, pp. 500–503.
URL: https://doi.org/10.1145/2901739.2903499

[150] Nassif, M., Hernandez, A., Sridharan, A. and Robillard, M. P. [2022]. Generating unit
tests for documentation, IEEE Trans. Software Eng. 48(9): 3268–3279.
URL: https://doi.org/10.1109/TSE.2021.3087087

[151] Nguyen, H. A., Dyer, R., Nguyen, T. N. and Rajan, H. [2014]. Mining preconditions
of apis in large-scale code corpus, in S. Cheung, A. Orso and M. D. Storey (eds), Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, ACM, pp. 166–177.
URL: https://doi.org/10.1145/2635868.2635924

[152] Nguyen, H. A., Phan, H. D., Samantha, S. K., Nguyen, S., Yadavally, A., Wang,
S., Rajan, H. and Nguyen, T. N. [2022]. A hybrid approach for inference between
behavioral exception API documentation and implementations, and its applications,
37th IEEE/ACM International Conference on Automated Software Engineering, ASE 2022,
Rochester, MI, USA, October 10-14, 2022, ACM, pp. 2:1–2:13.

[153] Nguyen, H. D. T., Qi, D., Roychoudhury, A. and Chandra, S. [2013]. Semfix: program
repair via semantic analysis, in D. Notkin, B. H. C. Cheng and K. Pohl (eds), 35th
International Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA,
May 18-26, 2013, IEEE Computer Society, pp. 772–781.
URL: https://doi.org/10.1109/ICSE.2013.6606623

[154] Nguyen, T., Vu, P. and Nguyen, T. [2020]. Code recommendation for exception han-
dling, in P. Devanbu, M. B. Cohen and T. Zimmermann (eds), ESEC/FSE ’20: 28th ACM
Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Virtual Event, USA, November 8-13, 2020, ACM, pp. 1027–1038.
URL: https://doi.org/10.1145/3368089.3409690

[155] Odermatt, M., Marcilio, D. and Furia, C. A. [2022]. Static analysis warnings and au-
tomatic fixing: A replication for c# projects, IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER 2022, Honolulu, HI, USA, March 15-18,
2022, IEEE, pp. 805–816.
URL: https://doi.org/10.1109/SANER53432.2022.00098

[156] Pacheco, C. and Ernst, M. D. [2007]. Randoop: feedback-directed random testing
for java, in R. P. Gabriel, D. F. Bacon, C. V. Lopes and G. L. S. Jr. (eds), Companion to
the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec,
Canada, ACM, pp. 815–816.
URL: https://doi.org/10.1145/1297846.1297902

Bibliography 167

[157] Pandita, R., Xiao, X., Zhong, H., Xie, T., Oney, S. and Paradkar, A. [2012]. Inferring
method specifications from natural language api descriptions, 2012 34th International
Conference on Software Engineering (ICSE), pp. 815–825.

[158] Papi, M. M., Ali, M., Jr., T. L. C., Perkins, J. H. and Ernst, M. D. [2008]. Practical
pluggable types for Java, Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2008, Seattle, WA, USA, July 20-24, 2008, ACM,
pp. 201–212.

[159] Peng, S., Kalliamvakou, E., Cihon, P. and Demirer, M. [2023]. The Impact of AI on
Developer Productivity: Evidence from Github Copilot.
URL: https://doi.org/10.48550/arXiv.2302.06590

[160] Peruma, A., Almalki, K., Newman, C. D., Mkaouer, M. W., Ouni, A. and Palomba, F.
[2020]. tsdetect: an open source test smells detection tool, in P. Devanbu, M. B. Cohen
and T. Zimmermann (eds), ESEC/FSE ’20: 28th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering, Virtual
Event, USA, November 8-13, 2020, ACM, pp. 1650–1654.
URL: https://doi.org/10.1145/3368089.3417921

[161] Pezzè, M. and Young, M. [2007]. Software Testing and Analysis: Process, Principles and
Techniques: Process, Principles, and Techniques, Wiley.

[162] Phan, H., Nguyen, H. A., Nguyen, T. N. and Rajan, H. [2017]. Statistical learning for
inference between implementations and documentation, 39th IEEE/ACM International
Conference on Software Engineering: New Ideas and Emerging Technologies Results Track,
ICSE-NIER 2017, Buenos Aires, Argentina, May 20-28, 2017, IEEE Computer Society,
pp. 27–30.
URL: https://doi.org/10.1109/ICSE-NIER.2017.9

[163] Polikarpova, N., Ciupa, I. and Meyer, B. [2009]. A comparative study of programmer-
written and automatically inferred contracts, Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ISSTA ’09, Association for Computing Ma-
chinery, New York, NY, USA, p. 93–104.
URL: https://doi.org/10.1145/1572272.1572284

[164] Prenner, J. A., Babii, H. and Robbes, R. [2022]. Can openai’s codex fix bugs?: An
evaluation on quixbugs, 3rd IEEE/ACM International Workshop on Automated Program
Repair, APR@ICSE 2022, Pittsburgh, PA, USA, May 19, 2022, IEEE, pp. 69–75.
URL: https://doi.org/10.1145/3524459.3527351

[165] Ram, A., Sawant, A. A., Castelluccio, M. and Bacchelli, A. [2018]. What makes a
code change easier to review: an empirical investigation on code change reviewability,
Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018, pp. 201–212.
URL: https://doi.org/10.1145/3236024.3236080

168 Bibliography

[166] Ramanathan, M. K., Clapp, L., Barik, R. and Sridharan, M. [2020]. Piranha: reducing
feature flag debt at uber, in G. Rothermel and D. Bae (eds), ICSE-SEIP 2020: 42nd In-
ternational Conference on Software Engineering, Software Engineering in Practice, Seoul,
South Korea, 27 June - 19 July, 2020, ACM, pp. 221–230.
URL: https://doi.org/10.1145/3377813.3381350

[167] Ramanathan, M. K., Grama, A. and Jagannathan, S. [2007a]. Path-sensitive inference
of function precedence protocols, Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, IEEE Computer Society, USA, p. 240–250.
URL: https://doi.org/10.1109/ICSE.2007.63

[168] Ramanathan, M. K., Grama, A. and Jagannathan, S. [2007b]. Static specification in-
ference using predicate mining, Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’07, Association for Comput-
ing Machinery, New York, NY, USA, p. 123–134.
URL: https://doi.org/10.1145/1250734.1250749

[169] Robillard, M. P., Bodden, E., Kawrykow, D., Mezini, M. and Ratchford, T. [2013]. Au-
tomated api property inference techniques, IEEE Transactions on Software Engineering
39(5): 613–637.

[170] Robillard, M. P. and Murphy, G. C. [2000]. Designing robust java programs with
exceptions, in J. C. Knight and D. S. Rosenblum (eds), ACM SIGSOFT Symposium on
Foundations of Software Engineering, an Diego, California, USA, November 6-10, 2000,
Proceedings, ACM, pp. 2–10.
URL: https://doi.org/10.1145/355045.355046

[171] Saha, R. K., Lyu, Y., Lam, W., Yoshida, H. and Prasad, M. R. [2018]. Bugs.jar: a large-
scale, diverse dataset of real-world java bugs, in A. Zaidman, Y. Kamei and E. Hill (eds),
Proceedings of the 15th International Conference on Mining Software Repositories, MSR
2018, Gothenburg, Sweden, May 28-29, 2018, ACM, pp. 10–13.
URL: https://doi.org/10.1145/3196398.3196473

[172] Seghir, M. N. and Schrammel, P. [2014]. Necessary and sufficient preconditions via
eager abstraction, in J. Garrigue (ed.), Programming Languages and Systems - 12th Asian
Symposium, APLAS 2014, Singapore, November 17-19, 2014, Proceedings, Vol. 8858 of
Lecture Notes in Computer Science, Springer, pp. 236–254.
URL: https://doi.org/10.1007/978-3-319-12736-1_13

[173] Sena, D., Coelho, R., Kulesza, U. and Bonifácio, R. [2016]. Understanding the ex-
ception handling strategies of java libraries: an empirical study, in M. Kim, R. Robbes
and C. Bird (eds), Proceedings of the 13th International Conference on Mining Software
Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016, ACM, pp. 212–222.
URL: https://doi.org/10.1145/2901739.2901757

[174] Shoham, S., Yahav, E., Fink, S. and Pistoia, M. [2007]. Static specification mining
using automata-based abstractions, Proceedings of the 2007 International Symposium

Bibliography 169

on Software Testing and Analysis, ISSTA ’07, Association for Computing Machinery, New
York, NY, USA, p. 174–184.
URL: https://doi.org/10.1145/1273463.1273487

[175] Soares, E., Ribeiro, M., Amaral, G., Gheyi, R., Fernandes, L., Garcia, A., Fonseca, B.
and Santos, A. L. M. [2020]. Refactoring test smells: A perspective from open-source
developers, in E. Cavalcante, F. Dantas and T. Batista (eds), SAST 20: 5th Brazilian
Symposium on Systematic and Automated Software Testing, Natal, Brazil, October 19-23,
2020, ACM, pp. 50–59.
URL: https://doi.org/10.1145/3425174.3425212

[176] SonarQube [2022]. [Online; accessed 3-May-2022].
URL: https://www.sonarqube.org/

[177] Soremekun, E., Kirschner, L., Böhme, M. and Papadakis, M. [2023]. Evaluating the
impact of experimental assumptions in automated fault localization, Proceedings of the
ACM/IEEE 45th International Conference on Software Engineering, ICSE 2023, pp. 1–13.

[178] Summers, A. J. and Müller, P. [2011]. Freedom before commitment: a lightweight
type system for object initialisation, in C. V. Lopes and K. Fisher (eds), Proceedings of
the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA,
October 22 - 27, 2011, ACM, pp. 1013–1032.
URL: https://doi.org/10.1145/2048066.2048142

[179] Tan, S. H., Marinov, D., Tan, L. and Leavens, G. T. [2012]. @tcomment: Testing
javadoc comments to detect comment-code inconsistencies, in G. Antoniol, A. Bertolino
and Y. Labiche (eds), Fifth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012, IEEE Computer
Society, pp. 260–269.
URL: https://doi.org/10.1109/ICST.2012.106

[180] Tao, Y., Han, D. and Kim, S. [2014]. Writing acceptable patches: An empirical study
of open source project patches, 30th IEEE International Conference on Software Mainte-
nance and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014, IEEE Com-
puter Society, pp. 271–280.
URL: https://doi.org/10.1109/ICSME.2014.49

[181] TestNG [2022]. [Online; accessed 3-May-2022].
URL: https://testng.org/doc/

[182] Thummalapenta, S. and Xie, T. [2009]. Alattin: Mining alternative patterns for de-
tecting neglected conditions, ASE 2009, 24th IEEE/ACM International Conference on
Automated Software Engineering, Auckland, New Zealand, November 16-20, 2009, IEEE
Computer Society, pp. 283–294.
URL: https://doi.org/10.1109/ASE.2009.72

170 Bibliography

[183] Torres, A., Oliveira, C., Okimoto, M. V., Marcilio, D., Queiroga, P., Castor, F., Bonifácio,
R., Canedo, E. D., Ribeiro, M. and Monteiro, E. [2023]. An investigation of confusing
code patterns in javascript, J. Syst. Softw. 203: 111731.
URL: https://doi.org/10.1016/j.jss.2023.111731

[184] Tschannen, J., Furia, C. A., Nordio, M. and Meyer, B. [2014]. Program checking with
less hassle, Proceedings of the 5th Working Conference on Verified Software: Theories,
Tools and Experiments (VSTTE 2013), Vol. 8164 of Lecture Notes in Computer Science,
Springer, pp. 149–169.

[185] Tufano, M., Palomba, F., Bavota, G., Penta, M. D., Oliveto, R., Lucia, A. D. and Poshy-
vanyk, D. [2016]. An empirical investigation into the nature of test smells, in D. Lo,
S. Apel and S. Khurshid (eds), Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016,
ACM, pp. 4–15.
URL: https://doi.org/10.1145/2970276.2970340

[186] Tómasdóttir, K. F., Aniche, M. and van Deursen, A. [2017]. Why and how JavaScript
developers use linters, 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 578–589.

[187] Utture, A., Liu, S., Kalhauge, C. G. and Palsberg, J. [2022]. Striking a balance: Prun-
ing false-positives from static call graphs, 44th IEEE/ACM 44th International Confer-
ence on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, ACM,
pp. 2043–2055.
URL: https://doi.org/10.1145/3510003.3510166

[188] Vahabzadeh, A., Fard, A. M. and Mesbah, A. [2015]. An empirical study of bugs in
test code, in R. Koschke, J. Krinke and M. P. Robillard (eds), 2015 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2015, Bremen, Germany,
September 29 - October 1, 2015, IEEE Computer Society, pp. 101–110.
URL: https://doi.org/10.1109/ICSM.2015.7332456

[189] Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L. J., Lam, P. and Sundaresan, V. [1999].
Soot - a java bytecode optimization framework, in S. A. MacKay and J. H. Johnson (eds),
Proceedings of the 1999 conference of the Centre for Advanced Studies on Collaborative
Research, November 8-11, 1999, Mississauga, Ontario, Canada, IBM, p. 13.
URL: https://dl.acm.org/citation.cfm?id=782008

[190] Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Gall, H. C. and Zaidman, A.
[2020]. How developers engage with static analysis tools in different contexts, Empir.
Softw. Eng. 25(2): 1419–1457.
URL: https://doi.org/10.1007/s10664-019-09750-5

[191] Wang, C., Peng, X., Liu, M., Xing, Z., Bai, X., Xie, B. and Wang, T. [2019]. A learning-
based approach for automatic construction of domain glossary from source code and

Bibliography 171

documentation, Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, ES-
EC/FSE 2019, Association for Computing Machinery, New York, NY, USA, p. 97–108.
URL: https://doi.org/10.1145/3338906.3338963

[192] Wasylkowski, A. and Zeller, A. [2009]. Mining temporal specifications from object us-
age, Proceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering, ASE ’09, IEEE Computer Society, USA, p. 295–306.
URL: https://doi.org/10.1109/ASE.2009.30

[193] Watson, C., Tufano, M., Moran, K., Bavota, G. and Poshyvanyk, D. [2020]. On learning
meaningful assert statements for unit test cases, in G. Rothermel and D. Bae (eds), ICSE
’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27 June
- 19 July, 2020, ACM, pp. 1398–1409.
URL: https://doi.org/10.1145/3377811.3380429

[194] Wei, Y., Furia, C. A., Kazmin, N. and Meyer, B. [2011]. Inferring better contracts,
in R. N. Taylor, H. Gall and N. Medvidović (eds), Proceedings of the 33rd International
Conference on Software Engineering (ICSE’11), ACM, pp. 191–200.

[195] Weimer, W. and Necula, G. C. [2004]. Finding and preventing run-time error handling
mistakes, in J. M. Vlissides and D. C. Schmidt (eds), Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2004, October 24-28, 2004, Vancouver, BC, Canada, ACM, pp. 419–431.
URL: https://doi.org/10.1145/1028976.1029011

[196] Wen, M., Liu, Y., Wu, R., Xie, X., Cheung, S. and Su, Z. [2019]. Exposing library
API misuses via mutation analysis, Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, IEEE / ACM,
pp. 866–877.
URL: https://doi.org/10.1109/ICSE.2019.00093

[197] Winter, E., Nowack, V., Bowes, D., Counsell, S., Hall, T., Haraldsson, S. Ó. and Wood-
ward, J. R. [2023]. Let’s talk with developers, not about developers: A review of
automatic program repair research, IEEE Trans. Software Eng. 49(1): 419–436.
URL: https://doi.org/10.1109/TSE.2022.3152089

[198] Winter, E. R., Nowack, V., Bowes, D., Counsell, S., Hall, T., Haraldsson, S. Ó., Wood-
ward, J. R., Kirbas, S., Windels, E., McBello, O., Atakishiyev, A., Kells, K. and Pagano,
M. W. [2022]. Towards developer-centered automatic program repair: findings from
bloomberg, in A. Roychoudhury, C. Cadar and M. Kim (eds), Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18,
2022, ACM, pp. 1578–1588.
URL: https://doi.org/10.1145/3540250.3558953

172 Bibliography

[199] Xia, C. S., Wei, Y. and Zhang, L. [2023]. Automated program repair in the era of large
pre-trained language models, 45th IEEE/ACM International Conference on Software En-
gineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, IEEE, pp. 1482–1494.
URL: https://doi.org/10.1109/ICSE48619.2023.00129

[200] Xuan, J., Martinez, M., Demarco, F., Clement, M., Marcote, S. R. L., Durieux, T., Berre,
D. L. and Monperrus, M. [2017]. Nopol: Automatic repair of conditional statement
bugs in java programs, IEEE Trans. Software Eng. 43(1): 34–55.
URL: https://doi.org/10.1109/TSE.2016.2560811

[201] Zeng, H., Chen, J., Shen, B. and Zhong, H. [2021]. Mining API constraints from
library and client to detect API misuses, 28th Asia-Pacific Software Engineering Confer-
ence, APSEC 2021, Taipei, Taiwan, December 6-9, 2021, IEEE, pp. 161–170.

[202] Zerouali, A. and Mens, T. [2017]. Analyzing the evolution of testing library usage in
open source java projects, in M. Pinzger, G. Bavota and A. Marcus (eds), IEEE 24th In-
ternational Conference on Software Analysis, Evolution and Reengineering, SANER 2017,
Klagenfurt, Austria, February 20-24, 2017, IEEE Computer Society, pp. 417–421.
URL: https://doi.org/10.1109/SANER.2017.7884645

[203] Zhang, C., Yang, J., Zhang, Y., Fan, J., Zhang, X., Zhao, J. and Ou, P. [2012]. Automatic
parameter recommendation for practical API usage, in M. Glinz, G. C. Murphy and
M. Pezzè (eds), 34th International Conference on Software Engineering, ICSE 2012, June
2-9, 2012, Zurich, Switzerland, IEEE Computer Society, pp. 826–836.
URL: https://doi.org/10.1109/ICSE.2012.6227136

[204] Zhang, J., Wang, X., Zhang, H., Sun, H., Pu, Y. and Liu, X. [2020]. Learning to handle
exceptions, 35th IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2020, Melbourne, Australia, September 21-25, 2020, IEEE, pp. 29–41.
URL: https://doi.org/10.1145/3324884.3416568

[205] Zhang, P. and Elbaum, S. G. [2012]. Amplifying tests to validate exception handling
code, in M. Glinz, G. C. Murphy and M. Pezzè (eds), 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, IEEE Computer
Society, pp. 595–605.
URL: https://doi.org/10.1109/ICSE.2012.6227157

[206] Zhang, T., Upadhyaya, G., Reinhardt, A., Rajan, H. and Kim, M. [2018]. Are code
examples on an online Q&A forum reliable?: a study of API misuse on stack overflow,
Proceedings of the 40th International Conference on Software Engineering, ICSE, ACM,
pp. 886–896.
URL: https://doi.org/10.1145/3180155.3180260

[207] Zhong, H., Meng, N., Li, Z. and Jia, L. [2020]. An empirical study on API parameter
rules, in G. Rothermel and D. Bae (eds), ICSE ’20: 42nd International Conference on
Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, ACM, pp. 899–911.
URL: https://doi.org/10.1145/3377811.3380922

Bibliography 173

[208] Zhong, H. and Su, Z. [2013]. Detecting API documentation errors, in A. L. Hosking,
P. T. Eugster and C. V. Lopes (eds), Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA
2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, ACM, pp. 803–
816.
URL: https://doi.org/10.1145/2509136.2509523

[209] Zhong, L. and Wang, Z. [2023]. A study on robustness and reliability of large language
model code generation.

[210] Zhou, Y., Wang, C., Yan, X., Chen, T., Panichella, S. and Gall, H. C. [2020]. Automatic
detection and repair recommendation of directive defects in java API documentation,
IEEE Trans. Software Eng. 46(9): 1004–1023.
URL: https://doi.org/10.1109/TSE.2018.2872971

174 Bibliography

URL References

1. An example of URL reference: https://dvmarcilio.github.io

2. http://www.25hoursaday.com/CsharpVsJava.html

3. https://spectrum.ieee.org/the-top-programming-languages-2023

4. https://www.tiobe.com/tiobe-index/

5. http://portal.core.edu.au/conf-ranks/

6. https://leetcode.com/

7. https://www.allthingsdistributed.com/2023/04/how-ai-coding-companions-will-change-the-way-developers-work.
htm

8. https://aws.amazon.com/blogs/aws/new-customization-capability-in-amazon-codewhisperer-generates-even-better-suggestions-preview/

9. https://aws.amazon.com/codewhisperer/customize/

10. https://www.uber.com/en-DE/blog/the-transformative-power-of-generative-ai

11. https://checkstyle.sourceforge.io/

12. https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

13. https://fbinfer.com/docs/all-issue-types/#nullptr_dereference

14. https://scan.coverity.com/

15. https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html

16. https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#np-method-may-return-null-but-is-declared-nonnull-np-nonnull-return-violation

17. https://rules.sonarsource.com/java

18. https://twitter.com/vogella/status/1096088933144952832

19. https://github.com/AlDanial/cloc

20. https://www.gerritcodereview.com/

21. https://www.vogella.com/tutorials/EclipsePlatformDevelopment/article.html##gerrit-verification-failures-due-to-missing-version-update

22. https://git.eclipse.org/r/##/c/140959/

23. http://tutor.rascal-mpl.org/Rascal/Rascal.html#/Rascal/Libraries/util/Benchmark/benchmark/
benchmark.html

24. https://github.com/google/closure-compiler

25. https://commons.apache.org/proper/commons-lang/javadocs/api-2.0/org/apache/commons/lang/
StringUtils.html#indexOfDifference(java.lang.String,%20java.lang.String)

26. https://stackoverflow.com/questions/156503

27. https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

28. https://docs.oracle.com/javase/8/docs/api/java/lang/Throwable.html

29. https://blog.jooq.org/2013/04/28/rare-uses-of-a-controlflowexception/

30. https://github.com/junit-team/junit4/wiki/Exception-testing

31. https://assertj.github.io/doc/#assertj-core-exception-assertions

32. https://developer.android.com/studio/test

175

https://dvmarcilio.github.io
http://www.25hoursaday.com/CsharpVsJava.html
https://spectrum.ieee.org/the-top-programming-languages-2023
https://www.tiobe.com/tiobe-index/
http://portal.core.edu.au/conf-ranks/
https://leetcode.com/
https://www.allthingsdistributed.com/2023/04/how-ai-coding-companions-will-change-the-way-developers-work.htm
https://www.allthingsdistributed.com/2023/04/how-ai-coding-companions-will-change-the-way-developers-work.htm
https://aws.amazon.com/blogs/aws/new-customization-capability-in-amazon-codewhisperer-generates-even-better-suggestions-preview/
https://aws.amazon.com/codewhisperer/customize/
https://www.uber.com/en-DE/blog/the-transformative-power-of-generative-ai
https://checkstyle.sourceforge.io/
https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://fbinfer.com/docs/all-issue-types/#nullptr_dereference
https://scan.coverity.com/
https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#np-method-may-return-null-but-is-declared-nonnull-np-nonnull-return-violation
https://rules.sonarsource.com/java
https://twitter.com/vogella/status/1096088933144952832
https://github.com/AlDanial/cloc
https://www.gerritcodereview.com/
https://www.vogella.com/tutorials/EclipsePlatformDevelopment/article.html####gerrit-verification-failures-due-to-missing-version-update
https://git.eclipse.org/r/####/c/140959/
http://tutor.rascal-mpl.org/Rascal/Rascal.html#/Rascal/Libraries/util/Benchmark/benchmark/benchmark.html
http://tutor.rascal-mpl.org/Rascal/Rascal.html#/Rascal/Libraries/util/Benchmark/benchmark/benchmark.html
https://github.com/google/closure-compiler
https://commons.apache.org/proper/commons-lang/javadocs/api-2.0/org/apache/commons/lang/StringUtils.html#indexOfDifference(java.lang.String,%20java.lang.String)
https://commons.apache.org/proper/commons-lang/javadocs/api-2.0/org/apache/commons/lang/StringUtils.html#indexOfDifference(java.lang.String,%20java.lang.String)
https://stackoverflow.com/questions/156503
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Throwable.html
https://blog.jooq.org/2013/04/28/rare-uses-of-a-controlflowexception/
https://github.com/junit-team/junit4/wiki/Exception-testing
https://assertj.github.io/doc/##assertj-core-exception-assertions
https://developer.android.com/studio/test

176 Bibliography

33. https://code.google.com/archive/p/catch-exception/

34. https://junit.org/junit5/docs/current/user-guide/#launcher-api-discovery

35. https://javaparser.org/

36. https://cran.r-project.org/

37. https://github.com/eclipse/eclipse-collections

38. https://github.com/eclipse/eclipse-collections/blob/63be239538ff2676680ff57294e5aa08ce03b602/
CONTRIBUTING.md

39. https://github.com/apache/geode/blob/4b84af392df529a94a7d3163966d9b28ae9cf79c/TESTING.
md

40. https://cwiki.apache.org/confluence/display/GEODE/About+Unit+Testing

41. https://github.com/hazelcast/hazelcast

42. https://sonarcloud.io/dashboard?id=hz-os-master

43. https://github.com/apilayer/restcountries

44. https://github.com/processing/processing/blob/4cc297c66908899cd29480c202536ecf749854e8/
README.md

45. https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

46. https://docs.oracle.com/javase/8/docs/api/java/io/EOFException.html

47. https://github.com/apache/hadoop

48. https://github.com/google/ExoPlayer

49. https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/
hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/TestFSInputChecker.java#L200

50. https://github.com/google/ExoPlayer/blob/5bfad37cd0d2917f8c62440a42e1f65aa535cac7/library/
core/src/test/java/com/google/android/exoplayer2/extractor/DefaultExtractorInputTest.java#
L140

51. https://github.com/spring-projects/spring-framework

52. https://docs.spring.io/spring/docs/3.0.0.M4/reference/html/ch11s02.html

53. https://docs.oracle.com/javase/8/docs/api/java/lang/Error.html

54. https://github.com/oracle/graal

55. https://github.com/eclipse/openj9

56. https://github.com/apache/commons-lang

57. https://github.com/google/guava

58. https://github.com/apache/flink

59. https://github.com/google/j2objc

60. https://github.com/apache/flink/blob/fe8625c70a710143e2e197a9ee3179d5a32e002e/flink-streaming-java/
src/test/java/org/apache/flink/streaming/runtime/operators/windowing/KeyMapTest.java#L101

61. https://github.com/junit-team/junit4/wiki/Exception-testing#trycatch-idiom

62. https://github.com/vipshop/Saturn

63. https://github.com/apache/flink/blob/df525b77d29ccd89649a64e5faad96c93f61ca08/flink-core/
src/test/java/org/apache/flink/core/memory/MemorySegmentUndersizedTest.java#L130

64. https://docs.oracle.com/javase/8/docs/api/java/lang/NullPointerException.html

65. https://lgtm.com/

66. https://github.com/apache/activemq

https://code.google.com/archive/p/catch-exception/
https://junit.org/junit5/docs/current/user-guide/##launcher-api-discovery
https://javaparser.org/
https://cran.r-project.org/
https://github.com/eclipse/eclipse-collections
https://github.com/eclipse/eclipse-collections/blob/63be239538ff2676680ff57294e5aa08ce03b602/CONTRIBUTING.md
https://github.com/eclipse/eclipse-collections/blob/63be239538ff2676680ff57294e5aa08ce03b602/CONTRIBUTING.md
https://github.com/apache/geode/blob/4b84af392df529a94a7d3163966d9b28ae9cf79c/TESTING.md
https://github.com/apache/geode/blob/4b84af392df529a94a7d3163966d9b28ae9cf79c/TESTING.md
https://cwiki.apache.org/confluence/display/GEODE/About+Unit+Testing
https://github.com/hazelcast/hazelcast
https://sonarcloud.io/dashboard?id=hz-os-master
https://github.com/apilayer/restcountries
https://github.com/processing/processing/blob/4cc297c66908899cd29480c202536ecf749854e8/README.md
https://github.com/processing/processing/blob/4cc297c66908899cd29480c202536ecf749854e8/README.md
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
https://docs.oracle.com/javase/8/docs/api/java/io/EOFException.html
https://github.com/apache/hadoop
https://github.com/google/ExoPlayer
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/TestFSInputChecker.java##L200
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/TestFSInputChecker.java##L200
https://github.com/google/ExoPlayer/blob/5bfad37cd0d2917f8c62440a42e1f65aa535cac7/library/core/src/test/java/com/google/android/exoplayer2/extractor/DefaultExtractorInputTest.java##L140
https://github.com/google/ExoPlayer/blob/5bfad37cd0d2917f8c62440a42e1f65aa535cac7/library/core/src/test/java/com/google/android/exoplayer2/extractor/DefaultExtractorInputTest.java##L140
https://github.com/google/ExoPlayer/blob/5bfad37cd0d2917f8c62440a42e1f65aa535cac7/library/core/src/test/java/com/google/android/exoplayer2/extractor/DefaultExtractorInputTest.java##L140
https://github.com/spring-projects/spring-framework
https://docs.spring.io/spring/docs/3.0.0.M4/reference/html/ch11s02.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Error.html
https://github.com/oracle/graal
https://github.com/eclipse/openj9
https://github.com/apache/commons-lang
https://github.com/google/guava
https://github.com/apache/flink
https://github.com/google/j2objc
https://github.com/apache/flink/blob/fe8625c70a710143e2e197a9ee3179d5a32e002e/flink-streaming-java/src/test/java/org/apache/flink/streaming/runtime/operators/windowing/KeyMapTest.java#L101
https://github.com/apache/flink/blob/fe8625c70a710143e2e197a9ee3179d5a32e002e/flink-streaming-java/src/test/java/org/apache/flink/streaming/runtime/operators/windowing/KeyMapTest.java#L101
https://github.com/junit-team/junit4/wiki/Exception-testing##trycatch-idiom
https://github.com/vipshop/Saturn
https://github.com/apache/flink/blob/df525b77d29ccd89649a64e5faad96c93f61ca08/flink-core/src/test/java/org/apache/flink/core/memory/MemorySegmentUndersizedTest.java##L130
https://github.com/apache/flink/blob/df525b77d29ccd89649a64e5faad96c93f61ca08/flink-core/src/test/java/org/apache/flink/core/memory/MemorySegmentUndersizedTest.java##L130
https://docs.oracle.com/javase/8/docs/api/java/lang/NullPointerException.html
https://lgtm.com/
https://github.com/apache/activemq

Bibliography 177

67. https://github.com/apache/activemq/blob/9abe2c6f97c92fc99c5a2ef02846f62002a671cf/activemq-unit-tests/
src/test/java/org/apache/activemq/broker/region/cursors/FilePendingMessageCursorTestSupport.
java#L83

68. https://github.com/apache/geode/blob/4b84af392df529a94a7d3163966d9b28ae9cf79c/geode-core/
src/distributedTest/java/org/apache/geode/internal/cache/execute/OnGroupsFunctionExecutionDUnitTest.
java

69. https://github.com/hibernate/hibernate-orm/commit/3489f75e1d455049cffd45694f025b97487b429f,
https://lgtm.com/projects/g/hibernate/hibernate-orm/rev/1e5a8d3c434c6791b89281c4ebf04ef08181fcd7

70. https://github.com/hibernate/hibernate-orm/

71. https://github.com/apache/kafka

72. https://github.com/apache/kafka/blob/9c8f75c4b624084c954b4da69f092211a9ac4689/streams/
src/test/java/org/apache/kafka/streams/kstream/WindowedSerdesTest.java#L73

73. https://github.com/junit-team/junit4/issues/706#issuecomment-21385116

74. https://github.com/JodaOrg/joda-time

75. https://github.com/pedrovgs/Algorithms

76. https://github.com/SonarSource/sonarqube

77. https://github.com/SonarSource/sonarqube/commit/14d6de3529b12ec0af367e551cf66ac6daae1ca7

78. https://github.com/SonarSource/sonarqube/commit/e4b519ed129dbc7b76eab00d6c48166a8993e35f

79. https://github.com/apache/beam

80. https://github.com/apache/beam/blob/f7b23ec69fa68f4f0b6386ecec32ab12982e4098/runners/google-cloud-dataflow-java/
src/test/java/org/apache/beam/runners/dataflow/DataflowRunnerTest.java

81. https://github.com/apache/beam/pull/5150#discussion_r182212260

82. https://github.com/RoaringBitmap/RoaringBitmap

83. https://github.com/RoaringBitmap/RoaringBitmap/pull/396

84. https://github.com/neo4j/neo4j

85. https://github.com/neo4j/neo4j/commit/0ce66ab6ebd454f9dbb5a0cf36e0f2483edec413

86. https://github.com/neo4j/neo4j/pull/12444#pullrequestreview-398471953

87. https://github.com/codecentric/spring-boot-admin

88. https://github.com/codecentric/spring-boot-admin/commit/caef5a004cbbc4ba897d854094b2546efd15d52b#

89. https://github.com/spring-io/initializr

90. https://github.com/spring-io/initializr/commit/2816c216315b989c45c25c18fd9f72bb606db8ee#
diff-e49dd42170d49f6c1eb73139645c48cf

91. https://rules.sonarsource.com/java/RSPEC-2698

92. https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/
hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/server/namenode/FSXAttrBaseTest.java#
L274

93. https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-common-project/
hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java#L3049-L3062

94. https://junit-pioneer.org/docs/vintage-test/

95. Apache Dubbo https://dubbo.apache.org/en/

96. Apache Commons Lang https://commons.apache.org/proper/commons-lang/

97. Apache Dubbo on GitHub https://github.com/apache/dubbo

98. https://github.com/apache/commons-lang/commit/ba607f525b842661d40195d0d4778528e2384e70

https://github.com/apache/activemq/blob/9abe2c6f97c92fc99c5a2ef02846f62002a671cf/activemq-unit-tests/src/test/java/org/apache/activemq/broker/region/cursors/FilePendingMessageCursorTestSupport.java##L83
https://github.com/apache/activemq/blob/9abe2c6f97c92fc99c5a2ef02846f62002a671cf/activemq-unit-tests/src/test/java/org/apache/activemq/broker/region/cursors/FilePendingMessageCursorTestSupport.java##L83
https://github.com/apache/activemq/blob/9abe2c6f97c92fc99c5a2ef02846f62002a671cf/activemq-unit-tests/src/test/java/org/apache/activemq/broker/region/cursors/FilePendingMessageCursorTestSupport.java##L83
https://github.com/apache/geode/blob/4b84af392df529a94a7d3163966d9b28ae9cf79c/geode-core/src/distributedTest/java/org/apache/geode/internal/cache/execute/OnGroupsFunctionExecutionDUnitTest.java
https://github.com/apache/geode/blob/4b84af392df529a94a7d3163966d9b28ae9cf79c/geode-core/src/distributedTest/java/org/apache/geode/internal/cache/execute/OnGroupsFunctionExecutionDUnitTest.java
https://github.com/apache/geode/blob/4b84af392df529a94a7d3163966d9b28ae9cf79c/geode-core/src/distributedTest/java/org/apache/geode/internal/cache/execute/OnGroupsFunctionExecutionDUnitTest.java
https://github.com/hibernate/hibernate-orm/commit/3489f75e1d455049cffd45694f025b97487b429f, https://lgtm.com/projects/g/hibernate/hibernate-orm/rev/1e5a8d3c434c6791b89281c4ebf04ef08181fcd7
https://github.com/hibernate/hibernate-orm/commit/3489f75e1d455049cffd45694f025b97487b429f, https://lgtm.com/projects/g/hibernate/hibernate-orm/rev/1e5a8d3c434c6791b89281c4ebf04ef08181fcd7
https://github.com/hibernate/hibernate-orm/
https://github.com/apache/kafka
https://github.com/apache/kafka/blob/9c8f75c4b624084c954b4da69f092211a9ac4689/streams/src/test/java/org/apache/kafka/streams/kstream/WindowedSerdesTest.java##L73
https://github.com/apache/kafka/blob/9c8f75c4b624084c954b4da69f092211a9ac4689/streams/src/test/java/org/apache/kafka/streams/kstream/WindowedSerdesTest.java##L73
https://github.com/junit-team/junit4/issues/706#issuecomment-21385116
https://github.com/JodaOrg/joda-time
https://github.com/pedrovgs/Algorithms
https://github.com/SonarSource/sonarqube
https://github.com/SonarSource/sonarqube/commit/14d6de3529b12ec0af367e551cf66ac6daae1ca7
https://github.com/SonarSource/sonarqube/commit/e4b519ed129dbc7b76eab00d6c48166a8993e35f
https://github.com/apache/beam
https://github.com/apache/beam/blob/f7b23ec69fa68f4f0b6386ecec32ab12982e4098/runners/google-cloud-dataflow-java/src/test/java/org/apache/beam/runners/dataflow/DataflowRunnerTest.java
https://github.com/apache/beam/blob/f7b23ec69fa68f4f0b6386ecec32ab12982e4098/runners/google-cloud-dataflow-java/src/test/java/org/apache/beam/runners/dataflow/DataflowRunnerTest.java
https://github.com/apache/beam/pull/5150#discussion_r182212260
https://github.com/RoaringBitmap/RoaringBitmap
https://github.com/RoaringBitmap/RoaringBitmap/pull/396
https://github.com/neo4j/neo4j
https://github.com/neo4j/neo4j/commit/0ce66ab6ebd454f9dbb5a0cf36e0f2483edec413
https://github.com/neo4j/neo4j/pull/12444#pullrequestreview-398471953
https://github.com/codecentric/spring-boot-admin
https://github.com/codecentric/spring-boot-admin/commit/caef5a004cbbc4ba897d854094b2546efd15d52b#
https://github.com/spring-io/initializr
https://github.com/spring-io/initializr/commit/2816c216315b989c45c25c18fd9f72bb606db8ee#diff-e49dd42170d49f6c1eb73139645c48cf
https://github.com/spring-io/initializr/commit/2816c216315b989c45c25c18fd9f72bb606db8ee#diff-e49dd42170d49f6c1eb73139645c48cf
https://rules.sonarsource.com/java/RSPEC-2698
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/server/namenode/FSXAttrBaseTest.java##L274
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/server/namenode/FSXAttrBaseTest.java##L274
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/server/namenode/FSXAttrBaseTest.java##L274
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java##L3049-L3062
https://github.com/apache/hadoop/blob/2ba44a73bf2bb7ef33a2259bd19ee62ef9bb5659/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/FileSystem.java##L3049-L3062
https://junit-pioneer.org/docs/vintage-test/
https://dubbo.apache.org/en/
https://commons.apache.org/proper/commons-lang/
https://github.com/apache/dubbo
https://github.com/apache/commons-lang/commit/ba607f525b842661d40195d0d4778528e2384e70

178 Bibliography

99. JavaParser: https://github.com/javaparser/javaparser

100. JGraphT: https://jgrapht.org/

101. https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/ArrayUtils.
html

102. https://jgrapht.org/javadoc-1.4.0/org/jgrapht/alg/shortestpath/AllDirectedPaths.html

103. https://github.com/apache/commons-text/blob/21fc34f17175aba66f55fb6f805e60c13055da49/src/
main/java/org/apache/commons/text/RandomStringGenerator.java#L362-L366

104. https://github.com/apache/commons-lang/blob/ce477d9140f1439c44c7a852d7df1e069e21cb85/src/
main/java/org/apache/commons/lang3/Validate.java#L107-L111

105. https://www.mongodb.com/

106. https://github.com/javaparser/javaparser/tree/master/javaparser-core-serialization/src/
main/java/com/github/javaparser/serialization

107. https://github.com/square/moshi

108. SymPy https://www.sympy.org/en/index.html

109. https://github.com/INRIA/spoon/tree/6d157f35491eabe6e7f7505a8ebc22a9694f491f/spoon-control-flow

110. https://github.com/openjdk/jdk/tree/jdk-11%2B28

111. https://github.com/apache/accumulo/pull/2594

112. https://github.com/apache/commons-lang/pull/869

113. https://github.com/apache/commons-lang/pull/870

114. https://github.com/apache/commons-lang/pull/871

115. https://github.com/apache/commons-math/pull/206

116. https://github.com/apache/commons-math/pull/207

117. https://github.com/apache/commons-text/pull/311

118. https://github.com/apache/commons-io/pull/339

119. https://github.com/apache/commons-io/blob/2ae025fe5c4a7d2046c53072b0898e37a079fe62/src/
main/java/org/apache/commons/io/EndianUtils.java

120. https://asm.ow2.io/asm4-guide.pdf#page=62

121. https://github.com/jfree/jfreechart

122. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/util/Collections.java#L1312

123. https://github.com/apache/lucene-solr/blob/7ada4032180b516548fc0263f42da6a7a917f92b/solr/
solrj/src/java/org/apache/solr/client/solrj/io/sql/ResultSetImpl.java#L631

124. https://github.com/apache/logging-log4j2/blob/59f6848b70eebbaa3aa0e14f7186b9b5e1942b5a/
log4j-layout-template-json/src/main/java/org/apache/logging/log4j/layout/template/json/
util/TruncatingBufferedWriter.java#L160

125. https://github.com/apache/logging-log4j2/blob/59f6848b70eebbaa3aa0e14f7186b9b5e1942b5a/
log4j-perf/src/main/java/org/apache/logging/log4j/perf/nogc/OpenHashStringMap.java#L476

126. https://github.com/apache/jackrabbit/blob/35d5732bc1418718f49553a81e42ac4146619dcf/jackrabbit-spi-commons/
src/main/java/org/apache/jackrabbit/spi/commons/name/PathFactoryImpl.java#L217

127. https://github.com/apache/commons-lang/blob/5def1c8d634f12a265662f38188cd611aa1e574b/src/
main/java/org/apache/commons/lang3/ArrayUtils.java#L2807

128. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/lang/String.java#L1002

https://github.com/javaparser/javaparser
https://jgrapht.org/
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/ArrayUtils.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/ArrayUtils.html
https://jgrapht.org/javadoc-1.4.0/org/jgrapht/alg/shortestpath/AllDirectedPaths.html
https://github.com/apache/commons-text/blob/21fc34f17175aba66f55fb6f805e60c13055da49/src/main/java/org/apache/commons/text/RandomStringGenerator.java##L362-L366
https://github.com/apache/commons-text/blob/21fc34f17175aba66f55fb6f805e60c13055da49/src/main/java/org/apache/commons/text/RandomStringGenerator.java##L362-L366
https://github.com/apache/commons-lang/blob/ce477d9140f1439c44c7a852d7df1e069e21cb85/src/main/java/org/apache/commons/lang3/Validate.java##L107-L111
https://github.com/apache/commons-lang/blob/ce477d9140f1439c44c7a852d7df1e069e21cb85/src/main/java/org/apache/commons/lang3/Validate.java##L107-L111
https://www.mongodb.com/
https://github.com/javaparser/javaparser/tree/master/javaparser-core-serialization/src/main/java/com/github/javaparser/serialization
https://github.com/javaparser/javaparser/tree/master/javaparser-core-serialization/src/main/java/com/github/javaparser/serialization
https://github.com/square/moshi
https://www.sympy.org/en/index.html
https://github.com/INRIA/spoon/tree/6d157f35491eabe6e7f7505a8ebc22a9694f491f/spoon-control-flow
https://github.com/openjdk/jdk/tree/jdk-11%2B28
https://github.com/apache/accumulo/pull/2594
https://github.com/apache/commons-lang/pull/869
https://github.com/apache/commons-lang/pull/870
https://github.com/apache/commons-lang/pull/871
https://github.com/apache/commons-math/pull/206
https://github.com/apache/commons-math/pull/207
https://github.com/apache/commons-text/pull/311
https://github.com/apache/commons-io/pull/339
https://github.com/apache/commons-io/blob/2ae025fe5c4a7d2046c53072b0898e37a079fe62/src/main/java/org/apache/commons/io/EndianUtils.java
https://github.com/apache/commons-io/blob/2ae025fe5c4a7d2046c53072b0898e37a079fe62/src/main/java/org/apache/commons/io/EndianUtils.java
https://asm.ow2.io/asm4-guide.pdf##page=62
https://github.com/jfree/jfreechart
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Collections.java#L1312
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Collections.java#L1312
https://github.com/apache/lucene-solr/blob/7ada4032180b516548fc0263f42da6a7a917f92b/solr/solrj/src/java/org/apache/solr/client/solrj/io/sql/ResultSetImpl.java#L631
https://github.com/apache/lucene-solr/blob/7ada4032180b516548fc0263f42da6a7a917f92b/solr/solrj/src/java/org/apache/solr/client/solrj/io/sql/ResultSetImpl.java#L631
https://github.com/apache/logging-log4j2/blob/59f6848b70eebbaa3aa0e14f7186b9b5e1942b5a/log4j-layout-template-json/src/main/java/org/apache/logging/log4j/layout/template/json/util/TruncatingBufferedWriter.java#L160
https://github.com/apache/logging-log4j2/blob/59f6848b70eebbaa3aa0e14f7186b9b5e1942b5a/log4j-layout-template-json/src/main/java/org/apache/logging/log4j/layout/template/json/util/TruncatingBufferedWriter.java#L160
https://github.com/apache/logging-log4j2/blob/59f6848b70eebbaa3aa0e14f7186b9b5e1942b5a/log4j-layout-template-json/src/main/java/org/apache/logging/log4j/layout/template/json/util/TruncatingBufferedWriter.java#L160
https://github.com/apache/logging-log4j2/blob/59f6848b70eebbaa3aa0e14f7186b9b5e1942b5a/log4j-perf/src/main/java/org/apache/logging/log4j/perf/nogc/OpenHashStringMap.java##L476
https://github.com/apache/logging-log4j2/blob/59f6848b70eebbaa3aa0e14f7186b9b5e1942b5a/log4j-perf/src/main/java/org/apache/logging/log4j/perf/nogc/OpenHashStringMap.java##L476
https://github.com/apache/jackrabbit/blob/35d5732bc1418718f49553a81e42ac4146619dcf/jackrabbit-spi-commons/src/main/java/org/apache/jackrabbit/spi/commons/name/PathFactoryImpl.java##L217
https://github.com/apache/jackrabbit/blob/35d5732bc1418718f49553a81e42ac4146619dcf/jackrabbit-spi-commons/src/main/java/org/apache/jackrabbit/spi/commons/name/PathFactoryImpl.java##L217
https://github.com/apache/commons-lang/blob/5def1c8d634f12a265662f38188cd611aa1e574b/src/main/java/org/apache/commons/lang3/ArrayUtils.java##L2807
https://github.com/apache/commons-lang/blob/5def1c8d634f12a265662f38188cd611aa1e574b/src/main/java/org/apache/commons/lang3/ArrayUtils.java##L2807
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/String.java##L1002
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/String.java##L1002

Bibliography 179

129. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/lang/String.java#L142-L153

130. https://openjdk.org/jeps/254

131. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/lang/String.java#L140

132. https://github.com/apache/pdfbox/blob/2fcdf26e400952357bef4276121bd59fb7e4040a/pdfbox/
src/main/java/org/apache/pdfbox/pdmodel/interactive/annotation/PDAnnotationWidget.java#
L110

133. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/lang/Double.java#L555

134. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/lang/Double.java#L50-L62

135. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/util/Stack.java#L80

136. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/util/Vector.java#L112

137. https://github.com/apache/pdfbox/blob/2fcdf26e400952357bef4276121bd59fb7e4040a/pdfbox/
src/main/java/org/apache/pdfbox/pdmodel/common/function/type4/ExecutionContext.java#L65

138. https://github.com/apache/commons-text/blob/21fc34f17175aba66f55fb6f805e60c13055da49/src/
main/java/org/apache/commons/text/similarity/IntersectionResult.java#L58

139. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/jdk/internal/org/objectweb/asm/util/ASMifier.java#L1120

140. https://github.com/apache/commons-io/blob/2ae025fe5c4a7d2046c53072b0898e37a079fe62/src/
main/java/org/apache/commons/io/FileUtils.java#L1482-L1483

141. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/net/URLConnection.java#L390

142. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/net/URLConnection.java#L433

143. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/util/zip/Deflater.java#L567-L573

144. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/jdk/internal/reflect/UnsafeStaticShortFieldAccessorImpl.java#L39-L41

145. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/jdk/internal/reflect/UnsafeStaticLongFieldAccessorImpl.java#L104

146. https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/package-summary.
html

147. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/time/Period.java#L321

148. https://github.com/openjdk/jdk/blob/339ca887835d6456da9fcccdc32fb7716cbc60bb/src/java.
base/share/classes/java/io/StringBufferInputStream.java#L113

149. https://github.com/openjdk/jdk/blob/339ca887835d6456da9fcccdc32fb7716cbc60bb/src/java.
base/share/classes/java/io/Reader.java#L168

150. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/lang/Integer.java#L614

151. https://github.com/openjdk/jdk/commit/564011cff0667c6d34cf6aa46eedd11f2e01862b

152. https://github.com/apache/commons-lang/commit/656d2023dcd149018cd126e283f675b4ffef9715

https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/String.java##L142-L153
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/String.java##L142-L153
https://openjdk.org/jeps/254
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/String.java##L140
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/String.java##L140
https://github.com/apache/pdfbox/blob/2fcdf26e400952357bef4276121bd59fb7e4040a/pdfbox/src/main/java/org/apache/pdfbox/pdmodel/interactive/annotation/PDAnnotationWidget.java#L110
https://github.com/apache/pdfbox/blob/2fcdf26e400952357bef4276121bd59fb7e4040a/pdfbox/src/main/java/org/apache/pdfbox/pdmodel/interactive/annotation/PDAnnotationWidget.java#L110
https://github.com/apache/pdfbox/blob/2fcdf26e400952357bef4276121bd59fb7e4040a/pdfbox/src/main/java/org/apache/pdfbox/pdmodel/interactive/annotation/PDAnnotationWidget.java#L110
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/Double.java##L555
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/Double.java##L555
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/Double.java##L50-L62
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/Double.java##L50-L62
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Stack.java##L80
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Stack.java##L80
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Vector.java##L112
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Vector.java##L112
https://github.com/apache/pdfbox/blob/2fcdf26e400952357bef4276121bd59fb7e4040a/pdfbox/src/main/java/org/apache/pdfbox/pdmodel/common/function/type4/ExecutionContext.java##L65
https://github.com/apache/pdfbox/blob/2fcdf26e400952357bef4276121bd59fb7e4040a/pdfbox/src/main/java/org/apache/pdfbox/pdmodel/common/function/type4/ExecutionContext.java##L65
https://github.com/apache/commons-text/blob/21fc34f17175aba66f55fb6f805e60c13055da49/src/main/java/org/apache/commons/text/similarity/IntersectionResult.java##L58
https://github.com/apache/commons-text/blob/21fc34f17175aba66f55fb6f805e60c13055da49/src/main/java/org/apache/commons/text/similarity/IntersectionResult.java##L58
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/jdk/internal/org/objectweb/asm/util/ASMifier.java##L1120
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/jdk/internal/org/objectweb/asm/util/ASMifier.java##L1120
https://github.com/apache/commons-io/blob/2ae025fe5c4a7d2046c53072b0898e37a079fe62/src/main/java/org/apache/commons/io/FileUtils.java##L1482-L1483
https://github.com/apache/commons-io/blob/2ae025fe5c4a7d2046c53072b0898e37a079fe62/src/main/java/org/apache/commons/io/FileUtils.java##L1482-L1483
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/net/URLConnection.java##L390
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/net/URLConnection.java##L390
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/net/URLConnection.java##L433
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/net/URLConnection.java##L433
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/zip/Deflater.java##L567-L573
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/zip/Deflater.java##L567-L573
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/jdk/internal/reflect/UnsafeStaticShortFieldAccessorImpl.java##L39-L41
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/jdk/internal/reflect/UnsafeStaticShortFieldAccessorImpl.java##L39-L41
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/jdk/internal/reflect/UnsafeStaticLongFieldAccessorImpl.java##L104
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/jdk/internal/reflect/UnsafeStaticLongFieldAccessorImpl.java##L104
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/package-summary.html
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/time/Period.java##L321
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/time/Period.java##L321
https://github.com/openjdk/jdk/blob/339ca887835d6456da9fcccdc32fb7716cbc60bb/src/java.base/share/classes/java/io/StringBufferInputStream.java##L113
https://github.com/openjdk/jdk/blob/339ca887835d6456da9fcccdc32fb7716cbc60bb/src/java.base/share/classes/java/io/StringBufferInputStream.java##L113
https://github.com/openjdk/jdk/blob/339ca887835d6456da9fcccdc32fb7716cbc60bb/src/java.base/share/classes/java/io/Reader.java##L168
https://github.com/openjdk/jdk/blob/339ca887835d6456da9fcccdc32fb7716cbc60bb/src/java.base/share/classes/java/io/Reader.java##L168
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/Integer.java##L614
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/Integer.java##L614
https://github.com/openjdk/jdk/commit/564011cff0667c6d34cf6aa46eedd11f2e01862b
https://github.com/apache/commons-lang/commit/656d2023dcd149018cd126e283f675b4ffef9715

180 Bibliography

153. https://github.com/apache/commons-io/commit/ff387016c2d95162aa6bf6735be47c559751b530

154. https://blog.joda.org/2012/11/javadoc-coding-standards.html

155. https://bytebuddy.net/#/develop

156. https://dubbo.apache.org/en/docs/v2.7/dev/checklist/

157. https://issues.apache.org/jira/browse/LANG-1681

158. https://github.com/apache/commons-lang/pull/1047

159. https://github.com/apache/commons-lang/blob/ce477d9140f1439c44c7a852d7df1e069e21cb85/src/
main/java/org/apache/commons/lang3/Conversion.java#L373

160. https://github.com/apache/commons-lang/blob/ce477d9140f1439c44c7a852d7df1e069e21cb85/src/
main/java/org/apache/commons/lang3/Conversion.java#L373

161. jqwik: Property-Based Testing in Java: https://jqwik.net/

162. https://github.com/apache/commons-lang/blob/ce477d9140f1439c44c7a852d7df1e069e21cb85/src/
test/java/org/apache/commons/lang3/math/FractionTest.java#L437

163. https://github.com/apache/commons-text/blob/04748ac3693163685e411167e5c689eb9ae98dac/src/
main/java/org/apache/commons/text/FormattableUtils.java#L90

164. https://docs.oracle.com/en/java/javase/18/docs/api/index.html

165. https://github.com/apache/commons-text/blob/04748ac3693163685e411167e5c689eb9ae98dac/src/
main/java/org/apache/commons/text/StringSubstitutor.java#L742

166. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/util/Random.java#L383-L388

167. https://github.com/AlphaAutoLeak/zelix-injection/blob/master/src/main/java/zelix/utils/
Utils.java#L256

168. JavaParser: https://github.com/javaparser/javaparser

169. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/lang/StringBuilder.java#L228C40-L228C40

170. https://github.com/feathersui/feathersui-starling-sdk/blob/master/modules/swfutils/src/
java/flash/swf/tools/SwfxParser.java#L173

171. https://docs.oracle.com/en/java/javase/20/jshell/introduction-jshell.html

172. https://github.com/aaiyer/SuanShu/blob/ed9829aed161112e4d5fb5e2a1ab5ae05d99a491/src/main/
java/com/numericalmethod/suanshu/vector/doubles/dense/operation/Basis.java#L83

173. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/util/concurrent/LinkedBlockingDeque.java#L182

174. https://github.com/microsphere-projects/microsphere-java/blob/main/microsphere-core/src/
main/java/io/microsphere/convert/multiple/StringToBlockingDequeConverter.java#L31

175. https://github.com/msdeep14/getAheadWithMe/blob/main/LowLevelDesign/Concurrency/src/practice/
ratelimiter/strategy/LeakyBucket.java#L15

176. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/util/ArrayDeque.java#L194

177. https://jspecify.dev/

178. https://github.com/jfree/jfreechart/blob/5aac9ae42147d34fe175e29af3993172e9c9080a/src/
main/java/org/jfree/chart/JFreeChart.java#L257

179. https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.
base/share/classes/java/util/Properties.java#L224

180. https://github.com/shtrih-m/javapos_shtrih/blob/master/Source/Core/src/com/shtrih/util/
Localizer.java#L169

https://github.com/apache/commons-io/commit/ff387016c2d95162aa6bf6735be47c559751b530
https://blog.joda.org/2012/11/javadoc-coding-standards.html
https://bytebuddy.net/##/develop
https://dubbo.apache.org/en/docs/v2.7/dev/checklist/
https://issues.apache.org/jira/browse/LANG-1681
https://github.com/apache/commons-lang/pull/1047
https://github.com/apache/commons-lang/blob/ce477d9140f1439c44c7a852d7df1e069e21cb85/src/main/java/org/apache/commons/lang3/Conversion.java#L373
https://github.com/apache/commons-lang/blob/ce477d9140f1439c44c7a852d7df1e069e21cb85/src/main/java/org/apache/commons/lang3/Conversion.java#L373
https://github.com/apache/commons-lang/blob/ce477d9140f1439c44c7a852d7df1e069e21cb85/src/main/java/org/apache/commons/lang3/Conversion.java#L373
https://github.com/apache/commons-lang/blob/ce477d9140f1439c44c7a852d7df1e069e21cb85/src/main/java/org/apache/commons/lang3/Conversion.java#L373
https://jqwik.net/
https://github.com/apache/commons-lang/blob/ce477d9140f1439c44c7a852d7df1e069e21cb85/src/test/java/org/apache/commons/lang3/math/FractionTest.java#L437
https://github.com/apache/commons-lang/blob/ce477d9140f1439c44c7a852d7df1e069e21cb85/src/test/java/org/apache/commons/lang3/math/FractionTest.java#L437
https://github.com/apache/commons-text/blob/04748ac3693163685e411167e5c689eb9ae98dac/src/main/java/org/apache/commons/text/FormattableUtils.java##L90
https://github.com/apache/commons-text/blob/04748ac3693163685e411167e5c689eb9ae98dac/src/main/java/org/apache/commons/text/FormattableUtils.java##L90
https://docs.oracle.com/en/java/javase/18/docs/api/index.html
https://github.com/apache/commons-text/blob/04748ac3693163685e411167e5c689eb9ae98dac/src/main/java/org/apache/commons/text/StringSubstitutor.java##L742
https://github.com/apache/commons-text/blob/04748ac3693163685e411167e5c689eb9ae98dac/src/main/java/org/apache/commons/text/StringSubstitutor.java##L742
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Random.java#L383-L388
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Random.java#L383-L388
https://github.com/AlphaAutoLeak/zelix-injection/blob/master/src/main/java/zelix/utils/Utils.java#L256
https://github.com/AlphaAutoLeak/zelix-injection/blob/master/src/main/java/zelix/utils/Utils.java#L256
https://github.com/javaparser/javaparser
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/StringBuilder.java##L228C40-L228C40
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/lang/StringBuilder.java##L228C40-L228C40
https://github.com/feathersui/feathersui-starling-sdk/blob/master/modules/swfutils/src/java/flash/swf/tools/SwfxParser.java##L173
https://github.com/feathersui/feathersui-starling-sdk/blob/master/modules/swfutils/src/java/flash/swf/tools/SwfxParser.java##L173
https://docs.oracle.com/en/java/javase/20/jshell/introduction-jshell.html
https://github.com/aaiyer/SuanShu/blob/ed9829aed161112e4d5fb5e2a1ab5ae05d99a491/src/main/java/com/numericalmethod/suanshu/vector/doubles/dense/operation/Basis.java##L83
https://github.com/aaiyer/SuanShu/blob/ed9829aed161112e4d5fb5e2a1ab5ae05d99a491/src/main/java/com/numericalmethod/suanshu/vector/doubles/dense/operation/Basis.java##L83
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/concurrent/LinkedBlockingDeque.java##L182
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/concurrent/LinkedBlockingDeque.java##L182
https://github.com/microsphere-projects/microsphere-java/blob/main/microsphere-core/src/main/java/io/microsphere/convert/multiple/StringToBlockingDequeConverter.java##L31
https://github.com/microsphere-projects/microsphere-java/blob/main/microsphere-core/src/main/java/io/microsphere/convert/multiple/StringToBlockingDequeConverter.java##L31
https://github.com/msdeep14/getAheadWithMe/blob/main/LowLevelDesign/Concurrency/src/practice/ratelimiter/strategy/LeakyBucket.java##L15
https://github.com/msdeep14/getAheadWithMe/blob/main/LowLevelDesign/Concurrency/src/practice/ratelimiter/strategy/LeakyBucket.java##L15
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/ArrayDeque.java##L194
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/ArrayDeque.java##L194
https://jspecify.dev/
https://github.com/jfree/jfreechart/blob/5aac9ae42147d34fe175e29af3993172e9c9080a/src/main/java/org/jfree/chart/JFreeChart.java##L257
https://github.com/jfree/jfreechart/blob/5aac9ae42147d34fe175e29af3993172e9c9080a/src/main/java/org/jfree/chart/JFreeChart.java##L257
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Properties.java##L224
https://github.com/openjdk/jdk/blob/da75f3c4ad5bdf25167a3ed80e51f567ab3dbd01/src/java.base/share/classes/java/util/Properties.java##L224
https://github.com/shtrih-m/javapos_shtrih/blob/master/Source/Core/src/com/shtrih/util/Localizer.java##L169
https://github.com/shtrih-m/javapos_shtrih/blob/master/Source/Core/src/com/shtrih/util/Localizer.java##L169

Bibliography 181

181. https://github.com/jenkinsci/pipeline-groovy-lib-plugin/blob/773332a145baaa64a936eb23019e92dc110f7bc0/
src/main/java/org/jenkinsci/plugins/workflow/libs/LibraryAdder.java#L172C5-L172C5

182. https://github.com/jspecify/jspecify/wiki/nullness-design-FAQ

183. https://www.sonarsource.com/blog/sonarlint-quick-fixes/

184. https://www.sonarsource.com/products/sonarqube/whats-new/sonarqube-9-5/

185. https://www.sonarsource.com/blog/deeper-sast-uncovers-hidden-security-vulnerabilities/
#behind-the-scenes-of-deeper-sast

186. https://www.sonarsource.com/products/sonarcloud/

187. https://www.uber.com/ch/en/about/science/

188. https://www.uber.com/us/en/about/

189. https://github.com/uber/piranha/

190. https://go.dev/

191. https://www.uber.com/en-SE/blog/go-monorepo-bazel/

192. https://monorepo.tools/#what-is-a-monorepo

193. https://www.uber.com/en-CH/blog/devpod-improving-developer-productivity-at-uber/

194. https://blog.pragmaticengineer.com/uber-engineering-levels/

195. https://spectrum.ieee.org/the-top-programming-languages-2023

196. https://www.apache.org/

https://github.com/jenkinsci/pipeline-groovy-lib-plugin/blob/773332a145baaa64a936eb23019e92dc110f7bc0/src/main/java/org/jenkinsci/plugins/workflow/libs/LibraryAdder.java##L172C5-L172C5
https://github.com/jenkinsci/pipeline-groovy-lib-plugin/blob/773332a145baaa64a936eb23019e92dc110f7bc0/src/main/java/org/jenkinsci/plugins/workflow/libs/LibraryAdder.java##L172C5-L172C5
https://github.com/jspecify/jspecify/wiki/nullness-design-FAQ
https://www.sonarsource.com/blog/sonarlint-quick-fixes/
https://www.sonarsource.com/products/sonarqube/whats-new/sonarqube-9-5/
https://www.sonarsource.com/blog/deeper-sast-uncovers-hidden-security-vulnerabilities/##behind-the-scenes-of-deeper-sast
https://www.sonarsource.com/blog/deeper-sast-uncovers-hidden-security-vulnerabilities/##behind-the-scenes-of-deeper-sast
https://www.sonarsource.com/products/sonarcloud/
https://www.uber.com/ch/en/about/science/
https://www.uber.com/us/en/about/
https://github.com/uber/piranha/
https://go.dev/
https://www.uber.com/en-SE/blog/go-monorepo-bazel/
https://monorepo.tools/##what-is-a-monorepo
https://www.uber.com/en-CH/blog/devpod-improving-developer-productivity-at-uber/
https://blog.pragmaticengineer.com/uber-engineering-levels/
https://spectrum.ieee.org/the-top-programming-languages-2023
https://www.apache.org/

182 Bibliography

	Contents
	List of Figures
	List of Tables
	I Prologue
	Introduction
	Thesis Statement
	Research Contributions
	Automated Program Repair of Static Analysis Warnings
	Actionable Static Analysis of Exception Behavior

	Outline

	State of the Art
	Introduction
	Automated Program Repair
	General-Purpose Automated Program Repair
	Large-Language Models and Automated Program Repair
	Practical Automated Program Repair Approaches
	Summing Up

	Static Analysis Tools
	Static Analysis Warnings
	Static Analysis and Automated Program Repair
	Summing Up

	Exception Behavior in Java
	Testing and Debugging
	Precondition Inference
	Repairing Exception Behavior
	Exception API Misuses
	Summing Up

	II Repairing Static Analysis Warnings
	Automatically Generating Fix Suggestions in Response to Static Code Analysis Warnings
	Introduction
	SpongeBugs: Approach and Implementation
	Rule Selection
	How SpongeBugs Works

	Empirical Evaluation of SpongeBugs: Experimental Design
	Research Questions
	Selecting Projects for the Evaluation
	Submitting Pull Requests With Fixes Made by SpongeBugs

	Empirical Evaluation of SpongeBugs: Results and Discussion
	RQ1: Applicability
	RQ2: Effectiveness and Acceptability
	RQ3: Performance
	RQ4: Student Projects
	RQ5: Code with Behavioral Bugs
	Additional Findings

	Limitations and Threats to Validity
	Conclusions: SpongeBugs

	III Analyzing Exception Behavior
	How Java Programmers Test Exception Behavior
	Introduction
	Background
	Exceptions: What They Are For
	Exception Testing Patterns

	Study Design
	Research Questions
	Project Selection
	Analysis Process

	Results
	RQ1: How often is exception behavior tested?
	RQ2: What kind of exception behavior is tested?
	RQ3: What coding patterns are used for exception testing?

	Limitations and Threats to Validity
	Applications of Findings and Future Work
	Conclusions

	Lightweight Precise Automatic Extraction of Exception Preconditions in Java Methods
	Introduction
	Showcase Examples of Using [0.5]wit
	Missing Documentation
	Inconsistent Documentation

	How [0.5]wit Works
	Parsing and CFG
	Local Exception Paths
	Global Exception Paths
	Modular Analysis
	Path Feasibility
	Exception Preconditions
	Heuristics and Limitations

	Experimental Evaluation
	Experimental Subjects
	Experimental Setup

	Experimental Results
	RQ1: Precision
	RQ2: Recall
	RQ3: Features
	RQ4: Modularity
	RQ5: Efficiency
	RQ6: Usefulness

	Threats to Validity
	Discussion of Applications
	Documentation
	Generating Tests

	Conclusions

	Towards Code Improvements Suggestions from Client Exception Analysis
	Introduction
	From Exception Preconditions to Code Improvements
	An Example of Potential Throw Detection
	Code Improvements
	Detecting Potential Throws Automatically

	Experimental Evaluation
	Potential Throw Detector Implementation
	Empirical Study: Design
	Empirical Study: Quantitative Results
	Empirical Study: Qualitative Discussion

	Conclusions

	IV Epilogue
	Conclusions
	Catering to Industry's Needs
	Closing Words

	V Appendices
	Additional Contributions on Static Analysis Violations
	C# Replication of SpongeBugs
	A Bot for Fixing Static Analysis Violations via Pull Requests

	Other Contributions on Software Engineering Topics
	List of Submitted Pull Requests
	SpongeBugs
	[0.5]wit

	Bibliography

